本文介绍了如何将3D数组转换为数据帧的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有一个维度数组(40 X 40 X 8064),它对应于(视频X频道X数据)。
但现在我想按如下顺序将数组转换为数据框:
Index | Video | Channel_0 | Channel_1 | Channel_2 | .... | Channel_39
0 | 0 |[Some Value] |[Some Value] |[Some Value] | .... |[Some Value]
1 | 0 |[Some Value] |[Some Value] |[Some Value] | .... |[Some Value]
2 | 0 |[Some Value] |[Some Value] |[Some Value] | .... |[Some Value]
3 | 0 |[Some Value] |[Some Value] |[Some Value] | .... |[Some Value]
4 | 0 |[Some Value] |[Some Value] |[Some Value] | .... |[Some Value]
...............
8063 | 0 |[Some Value] |[Some Value] |[Some Value] | .... |[Some Value]
......
......
322559 | 39 |[Some Value] |[Some Value] |[Some Value] | .... |[Some Value]
推荐答案
import numpy as np
import pandas as pd
n_videos = 2
n_channels = 3
n_points = 4
# Generate data
A = np.arange(n_videos * n_channels * n_points).reshape(n_videos,
n_channels,
n_points)
col_names = ["Channel_{}".format(i) for i in range(n_channels)]
# Need to re-order axis before reshape.
# Want axis correspoonding to videos to be at first axis.
df = pd.DataFrame(np.rollaxis(A, 2, 1).reshape(-1, n_channels),
columns=col_names)
video_idx = np.hstack((np.full((n_points,), i) for i in range(n_videos)))
video_idx = pd.Series(video_idx, name="Video")
df.insert(0, "Video", video_idx)
这篇关于如何将3D数组转换为数据帧的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!