本文介绍了在KERAS FIT_GENERATOR中将Shuffle设置为True时精度降低的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我使用的数据非常不平衡。
我正在使用VGG16训练图像分类器。我冻结了VGG16中的所有层,接受最后两个完全连接的层。
BATCH_SIZE = 128
EPOCHS = 80
当我设置Shuffle=False时,每个类的查准率和召回率都非常高(介于.80-.90之间)但当我设置Shuffle=True时,每个类的查准率和召回率下降到0.10-0.20。我不确定发生了什么。请帮帮忙好吗?
代码如下:
img_size = 224
trainGen = trainAug.flow_from_directory(
trainPath,
class_mode="categorical",
target_size=(img_size, img_size),
color_mode="rgb",
shuffle=False,
batch_size=BATCH_SIZE)
valGen = valAug.flow_from_directory(
valPath,
class_mode="categorical",
target_size=(img_size, img_size),
color_mode="rgb",
shuffle=False,
batch_size=BATCH_SIZE)
testGen = valAug.flow_from_directory(
testPath,
class_mode="categorical",
target_size=(img_size, img_size),
color_mode="rgb",
shuffle=False,
batch_size=BATCH_SIZE)
baseModel = VGG16(weights="imagenet", include_top=False,input_tensor=Input(shape=(img_size, img_size, 3)))
headModel = baseModel.output
headModel = Flatten(name="flatten")(headModel)
headModel = Dense(512, activation="relu")(headModel)
headModel = Dropout(0.5)(headModel)
headModel = Dense(PFR_NUM_CLASS, activation="softmax")(headModel)
# place the head FC model on top of the base model (this will become
# the actual model we will train)
model = Model(inputs=baseModel.input, outputs=headModel)
# loop over all layers in the base model and freeze them so they will
# *not* be updated during the first training process
for layer in baseModel.layers:
layer.trainable = False
班级权重计算方法为:
from sklearn.utils import class_weight
import numpy as np
class_weights = class_weight.compute_class_weight(
'balanced',
np.unique(trainGen.classes),
trainGen.classes)
以下是类权重:
array([0.18511007, 2.06740331, 1.00321716, 3.53018868, 2.48637874,
2.27477204, 1.57557895, 6.68214286, 1.04233983, 4.02365591])
培训代码为:
# compile our model (this needs to be done after our setting our layers to being non-trainable
print("[INFO] compiling model...")
opt = SGD(lr=1e-5, momentum=0.8)
model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"])
# train the head of the network for a few epochs (all other layers
# are frozen) -- this will allow the new FC layers to start to become
#initialized with actual "learned" values versus pure random
print("[INFO] training head...")
H = model.fit_generator(
trainGen,
steps_per_epoch=totalTrain // BATCH_SIZE,
validation_data=valGen,
validation_steps=totalVal // BATCH_SIZE,
epochs=EPOCHS,
class_weight=class_weights,
verbose=1,
callbacks=callbacks_list)
# reset the testing generator and evaluate the network after
# fine-tuning just the network head
推荐答案
在您的情况下,设置shuffle=True
的问题是,如果您在验证集上移动,结果将是混乱的。碰巧预测是正确的,但与错误的指数相比可能会导致误导结果,就像在您的案例中发生的那样。
始终shuffle=True
位于训练集,shuffle=False
位于验证集和测试集。
这篇关于在KERAS FIT_GENERATOR中将Shuffle设置为True时精度降低的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!