本文介绍了列表中夫妇的乘积之和的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我想在列表中找出情侣乘积的和。
例如,给出了一个[1, 2, 3, 4]
列表。我想得到的是答案=1*2 + 1*3 + 1*4 + 2*3 + 2*4 + 3*4
。
我使用暴力操作,对于非常大的列表,它会给我带来超时错误。 我想要一种有效的方法来做这件事。请告诉我,我如何才能做到这一点?
以下是我的代码,该代码正在运行,但我需要更高效的代码:
def proSum(list):
count = 0
for i in range(len(list)- 1):
for j in range(i + 1, len(list)):
count += list[i] * list[j]
return count
推荐答案
如下:
In [1]: def prodsum(xs):
...: return (sum(xs)**2 - sum(x*x for x in xs)) / 2
...:
In [2]: prodsum([1, 2, 3, 4]) == 1*2 + 1*3 + 1*4 + 2*3 + 2*4 + 3*4
Out[2]: True
让xs = a1, a2, .., an
,然后
(a1+a2+...+an)^2 = 2(a1a2+a1a3+...+an-1an) + (a1^2+...+an^2)
因此我们有
a1a2+...+an-1an = {(a1+a2+...+an)^2 - (a1^2+...+an^2)}/2
比较@Georg的方法和我的方法
结果和测试代码如下(时间越短越好):
In [1]: import timeit
In [2]: import matplotlib.pyplot as plt
In [3]: def eastsunMethod(xs):
...: return (sum(xs)**2 - sum(x*x for x in xs)) / 2
...:
In [4]: def georgMethod(given):
...: sum = 0
...: res = 0
...: cur = len(given) - 1
...:
...: while cur >= 0:
...: res += given[cur] * sum
...: sum += given[cur]
...: cur -= 1
...: return res
...:
In [5]: sizes = range(24)
In [6]: esTimes, ggTimes = [], []
In [7]: for s in sizes:
...: t1 = timeit.Timer('eastsunMethod(xs)', 'from __main__ import eastsunMethod;xs=range(2**%d)' % s)
...: t2 = timeit.Timer('georgMethod(xs)', 'from __main__ import georgMethod;xs=range(2**%d)' % s)
...: esTimes.append(t1.timeit(8))
...: ggTimes.append(t2.timeit(8))
In [8]: fig, ax = plt.subplots(figsize=(18, 6));lines = ax.plot(sizes, esTimes, 'r', sizes, ggTimes);ax.legend(lines, ['Eastsun', 'georg'], loc='center');ax.set_xlabel('size');ax.set_ylabel('time');ax.set_xlim([0, 23])
这篇关于列表中夫妇的乘积之和的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!