Python3.1-网格模拟概念性问题

Python 3.1- Grid Simulation Conceptual issue(Python3.1-网格模拟概念性问题)
本文介绍了Python3.1-网格模拟概念性问题的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

目标是将一维数组视为二维网格。第二个一维数组提供需要在网格中更改的值的列表,第三个数组按值的大小指示。

问题是,修改后的值周围的值也会更改。 下面的示例保留为一维数组,但在其上进行计算时就好像它是二维网格一样。它可以工作;但目前它会更改网格中与一维列表(示例)中的值匹配的所有值。我不想只转换1个值及其周围环境,列表中有1个值。

也就是说,如果列表是[2,3];我只想更改迭代中遇到的第一个2和3值。目前,该示例在网格中每隔2个就改变一次。

让我困惑的是(可能是因为我组织修改计算的方式),我不能简单地迭代网格并在每次匹配时删除列表值。

提前感谢您抽出时间!!

代码如下;

import numpy

def grid_range(value):
    if value > 60000:
        value = 60000
        return (value)
    elif value < 100:
        value = 100
        return(value)
    elif value <= 60000 and value >= 100:
        return(value)


def grid(array,samples,details):

    original_length = len(array)
    c = int((original_length)**0.5)

    new_array = []                                                                  #create a new array with the modified values

    for elem in range (len(array)):                                                 #if the value is in samples
        if array[elem] in samples:
            value = array[elem] + (array[elem] * (details[1]/100))
            test_range = grid_range(value)
            new_array.append(test_range)

        elif ((elem + 1) < original_length) and array[elem - 1] in samples:                                          #change the one before the value                                 
            if (len(new_array) % c == 0) and array[elem + 1] not in samples:                             
                new_array.append(array[elem])
            else:
                new_forward_element = array[elem] +(array[elem] * (details[2]/100))   
                test_range1 = grid_range(new_forward_element)
                new_array.append(test_range1)

        elif ((elem + 1) < original_length) and (array[elem + 1]) in samples:       #change the one before and that it doesn't attempt to modify passed the end of the array                                 
            if (len(new_array) + 1) % c == 0:
                new_array.append(array[elem])
            else:
                new_back_element = array[elem] +(array[elem] * (details[2]/100))
                test_range2 = grid_range(new_back_element)    
                new_array.append(test_range2)

        elif ((elem+c) <= (original_length - c))and(array[elem + c]) in samples:    #if based on the 9 numbers on the right of the keyboard with test value numebr 5; this is position '2' 
            extra1 = array[elem] +(array[elem] * (details[2]/100))
            test_range3 = grid_range(extra1)
            new_array.append(test_range3)

        elif (array[abs(elem - c)]) in samples:                                     #position '8'
            extra2 = array[elem] +(array[elem] * (details[2]/100))
            test_range4 = grid_range(extra2)
            new_array.append(test_range4)

        elif (array[abs(elem - (c-1))]) in samples:                                 #position '7' 
            if (elem - (c-1)) % c == 0:
                new_array.append(array[elem])
            else:
                extra3 = array[elem] +(array[elem] * (details[2]/100))
                test_range5 = grid_range(extra3)
                new_array.append(test_range5)

        elif (array[abs(elem - (c+1))]) in samples:                                 #position '9'    
            if (elem - (c+1) + 1) % c == 0:
                new_array.append(array[elem])

            else:
                extra4 = array[elem] +(array[elem] * (details[2]/100))
                test_range6 = grid_range(extra4) 
                new_array.append(test_range6)

        elif ((elem +(c-1)) < original_length) and (array[elem + (c-1)]) in samples:    #position '1', also not passed total array length
            if (elem + (c-1)+ 1) % c == 0:
                new_array.append(array[elem])
            else:            
                extra5 = array[elem] +(array[elem] * (details[2]/100))
                test_range7 = grid_range(extra5)
                new_array.append(test_range7)

        elif (elem + (c+1)) < (len(array)- c) and (array[elem + (c+1)]) in samples:     #position '3', also not passed total array length
            if (elem + (c+1)) % c == 0:
                new_array.append(array[elem])
            else:
                extra6 = array[elem] +(array[elem] * (details[2]/100))
                test_range8 = grid_range(extra6)
                new_array.append(test_range8)

        else:
            new_array.append(array[elem])

    return(new_array)


a = [16,2,20,4,14,6,70,8,9,100,32,15,7,14,50,20,17,10,9,20,7,17,50,2,19,20]
samples = [2]
grid_details = [10,50,100]

result = grid(a,samples,grid_details)

编辑:

根据您的回答Joe,我已经创建了一个版本,它将主值(Center)修改为特定的百分比,并将周围的元素修改为另一个。但是,如何确保在下一次迭代采样期间不会再次转换更改的值。

感谢您抽出时间!

示例代码:

def grid(array,samples,details):

    #Sides of the square (will be using a squarable number
    Width = (len(array)) ** 0.5
    #Convert to grid
    Converted = array.reshape(Width,Width)
    #Conversion details
    Change = [details[1]] + [details[2]] 
    nrows, ncols = Converted.shape

    for value in samples:

        #First instance where indexing returns it
        i,j  = np.argwhere(Converted == value)[0]

        #Prevent indexing outside the boudaries of the
        #array which would cause a "wraparound" assignment
        istart, istop = max(i-1, 0), min(i+2, nrows)
        jstart, jstop = max(j-1, 0), min(j+2, ncols)


        #Set the value within a 3x3 window to their "new_value"  
        for elem in Converted[istart:istop, jstart:jstop]:

        Converted[elem] = elem + (elem * (value * ((Change[1]/100))

        #Set the main value to the new value  
        Converted[i,j] = value + (value * ((Change[0])/100))


    #Convert back to 1D list
    Converted.tolist()

    return (Converted)


a =  [16,2,20,4,14,6,70,8,9,100,32,15,7,14,50,20,17,10,9,20,7,17,50,2,19,20,21,22,23,24,25]
samples = [2, 7]
grid_details = [10,50,100]

result = grid(a,samples,grid_details)

print(result)

PS:我不会避免修改网格中以前修改过的任何值,无论是主值还是周围值。

推荐答案

首先,我不太清楚您在问什么,如果我完全误解了您的问题,请原谅。

您说您只想修改等于给定值的第一项,而不是全部修改。如果是这样,您将需要在找到第一个值后添加break,否则您将继续循环并修改所有其他值。

但是,有更好的方法可以做您想做的事情。

此外,您在顶部导入NumPy,然后再也不(?)使用它...

这正是您想要使用Numpy的类型,所以我将给出一个使用它的示例。

看起来您只是将一个函数应用于2D数组的3x3移动窗口,其中数组的值与某个给定值相匹配。

如果我们想要将给定索引周围的3x3区域设置为某个值,我们只需执行以下操作:

x[i-1:i+1, j-1:j+1] = value 

...其中x是数组,ij是行和列,value是要设置的值。(同样,x[i-1:i+1, j-1:j+1]返回<i,j>周围的3x3数组)

此外,如果我们想知道<i,j>指示数组中特定值出现的位置,我们可以使用numpy.argwhere,它将为给定条件为真的每个位置返回<i,j>指示的列表。

(在Numy数组上使用条件会产生一个布尔数组,显示条件为真或假的位置。因此,x >= 10将产生一个与xNOTTrueFalse相同形状的布尔数组。这使您可以像x[x>100] = 10一样设置x中大于100到10的所有值。)

总而言之,我相信这段代码做了您想做的事情:

import numpy as np

# First let's generate some data and set a few duplicate values
data = np.arange(100).reshape(10,10)
data[9,9] = 2
data[8,6] = 53

print 'Original Data:'
print data

# We want to replace the _first_ occurences of "samples" with the corresponding
# value in "grid_details" within a 3x3 window...
samples = [2, 53, 69]
grid_details = [200,500,100]

nrows, ncols = data.shape
for value, new_value in zip(samples, grid_details):
    # Notice that were're indexing the _first_ item than argwhere returns!
    i,j = np.argwhere(data == value)[0]

    # We need to make sure that we don't index outside the boundaries of the
    # array (which would cause a "wraparound" assignment)
    istart, istop = max(i-1, 0), min(i+2, nrows)
    jstart, jstop = max(j-1, 0), min(j+2, ncols)

    # Set the value within a 3x3 window to be "new_value"
    data[istart:istop, jstart:jstop] = new_value

print 'Modified Data:'
print data

这将产生:

Original Data:
[[ 0  1  2  3  4  5  6  7  8  9]
 [10 11 12 13 14 15 16 17 18 19]
 [20 21 22 23 24 25 26 27 28 29]
 [30 31 32 33 34 35 36 37 38 39]
 [40 41 42 43 44 45 46 47 48 49]
 [50 51 52 53 54 55 56 57 58 59]
 [60 61 62 63 64 65 66 67 68 69]
 [70 71 72 73 74 75 76 77 78 79]
 [80 81 82 83 84 85 50 87 88 89]
 [90 91 92 93 94 95 96 97 98  2]]

Modified Data:
[[  0 200 200 200   4   5   6   7   8   9]
 [ 10 200 200 200  14  15  16  17  18  19]
 [ 20  21  22  23  24  25  26  27  28  29]
 [ 30  31  32  33  34  35  36  37  38  39]
 [ 40  41 500 500 500  45  46  47  48  49]
 [ 50  51 500 500 500  55  56  57 100 100]
 [ 60  61 500 500 500  65  66  67 100 100]
 [ 70  71  72  73  74  75  76  77 100 100]
 [ 80  81  82  83  84  85  50  87  88  89]
 [ 90  91  92  93  94  95  96  97  98   2]]

最后,您提到您想要"将某些东西同时视为N维数组和"平面"列表"。在某种意义上,这就是NumPy数组已经是的。

例如:

import numpy as np

x = np.arange(9)
y = x.reshape(3,3)

print x
print y

y[2,2] = 10000

print x
print y

这里,yx中的"view"。如果我们更改y的元素,则会更改x的相应元素,反之亦然。

类似地,如果我们希望将2D数组(或3D、4D等)视为"平面"1D数组,则只需调用flat_array = y.ravel(),其中y是2D数组。

希望这会有帮助,至少!

这篇关于Python3.1-网格模拟概念性问题的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Leetcode 234: Palindrome LinkedList(Leetcode 234:回文链接列表)
How do I read an Excel file directly from Dropbox#39;s API using pandas.read_excel()?(如何使用PANDAS.READ_EXCEL()直接从Dropbox的API读取Excel文件?)
subprocess.Popen tries to write to nonexistent pipe(子进程。打开尝试写入不存在的管道)
I want to realize Popen-code from Windows to Linux:(我想实现从Windows到Linux的POpen-code:)
Reading stdout from a subprocess in real time(实时读取子进程中的标准输出)
How to call type safely on a random file in Python?(如何在Python中安全地调用随机文件上的类型?)