使用Python使用稀疏CSV数据填充Pandas Dataframe

Using Python to populate Pandas Dataframe with sparse CSV data(使用Python使用稀疏CSV数据填充Pandas Dataframe)
本文介绍了使用Python使用稀疏CSV数据填充Pandas Dataframe的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有如下文本文件,如下所示:

foo_14:14896|foo_23:17988|foo_16:1611|foo_5:14729|foo_6:13008|foo_2:19548|foo_8:2565
foo_18:13236|foo_17:6127|foo_14:5996
foo_4:12561|foo_24:20010|foo_15:20227|foo_6:3489|foo_8:19129|foo_1:2589|foo_25:5204|foo_19:18113|foo_3:20030|foo_16:12739|foo_5:5494  
foo_23:3606|foo_13:22588|foo_5:15104|foo_12:3307|foo_16:2039|foo_14:21537|foo_1:13178|foo_20:19090|foo_2:1140   
foo_5:10620|foo_21:11142|foo_22:13379|foo_1:16132|foo_10:9330|foo_23:13913|foo_6:8314|foo_13:4967    
foo_13:4891|foo_5:22715|foo_2:12098|foo_8:18634|foo_23:1341|foo_4:13995|foo_16:2923|foo_10:13663|foo_7:22939|foo_14:16711|foo_25:17824  
foo_22:8180|foo_1:11974|foo_7:6660|foo_17:17839|foo_10:3605|foo_8:22439|foo_6:15494|foo_11:17924|foo_18:17351|foo_20:16627|foo_14:9223|foo_13:2538|foo_16:19077 
foo_12:11381|foo_24:541|foo_12:13106|foo_7:6459|foo_11:6398|foo_14:23127|foo_9:15701   

使用以下代码:

df = pd.read_csv("text.txt",names=['text'],header=None)
data = df['text'].str.split("|")
names=[  y.split(':') for x in data for y in x]
ds=pd.DataFrame(names)
ds = ds.pivot(columns=0).fillna('')

我得到的输出如下所示:

0  foo_1 foo_10 foo_11 foo_12 foo_13 foo_14 foo_15 foo_16 foo_17 foo_18 foo_19 foo_2 foo_20 foo_21 foo_22 foo_23 foo_24 foo_25 foo_3 foo_4  foo_5  foo_6 foo_7 foo_8     foo_9
0                                     14896
1                                                                                                          17988
2                                                    1611
3                                                                                                                                           14729
4                                                                                                                                                  13008
..   ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...   ...    ...    ...    ...    ...    ...    ...   ...   ...    ...    ...   ...   ...       ...
64                      13106
65                                                                                                                                                        6459
66                6398
67                                    23127
68                                                                                                                                                                    15701
但是,我希望看到同一行上的每个数据字段。例如:

foo_14, foo_23, foo_16, foo_5, foo_6, foo_2 and foo_8 all appearing in row 0
foo_18, foo_17 and foo_14 should all appear in row 1
etc etc...

而不是每个条目一行,我想将它们批量存储以供阅读

0  foo_1 foo_10 foo_11 foo_12 foo_13 foo_14 foo_15 foo_16 foo_17 foo_18 foo_19 foo_2 foo_20 foo_21 foo_22 foo_23 foo_24 foo_25 foo_3 foo_4  foo_5  foo_6 foo_7 foo_8     foo_9
0                                     14896          1611                       19548                      17988                        14729  13008           2565

etc

推荐答案

如果我理解正确的话,这里有一种方法:

from io import StringIO
import pandas as pd

txtfile = StringIO("""foo_14:14896|foo_23:17988|foo_16:1611|foo_5:14729|foo_6:13008|foo_2:19548|foo_8:2565
foo_18:13236|foo_17:6127|foo_14:5996
foo_4:12561|foo_24:20010|foo_15:20227|foo_6:3489|foo_8:19129|foo_1:2589|foo_25:5204|foo_19:18113|foo_3:20030|foo_16:12739|foo_5:5494  
foo_23:3606|foo_13:22588|foo_5:15104|foo_12:3307|foo_16:2039|foo_14:21537|foo_1:13178|foo_20:19090|foo_2:1140   
foo_5:10620|foo_21:11142|foo_22:13379|foo_1:16132|foo_10:9330|foo_23:13913|foo_6:8314|foo_13:4967    
foo_13:4891|foo_5:22715|foo_2:12098|foo_8:18634|foo_23:1341|foo_4:13995|foo_16:2923|foo_10:13663|foo_7:22939|foo_14:16711|foo_25:17824  
foo_22:8180|foo_1:11974|foo_7:6660|foo_17:17839|foo_10:3605|foo_8:22439|foo_6:15494|foo_11:17924|foo_18:17351|foo_20:16627|foo_14:9223|foo_13:2538|foo_16:19077 
foo_12:11381|foo_24:541|foo_12:13106|foo_7:6459|foo_11:6398|foo_14:23127|foo_9:15701""")

df = pd.read_csv(txtfile, names=['text'])

#df_out = df['text'].str.split('|', expand=True).apply(lambda x: x.str.replace('(:d+)', '', regex=True))

@chris在下面的评论中改进。

df_out = df['text'].str.split('|', expand=True).replace('(:d+)', '', regex=True)
print(df_out)

输出:

       0       1       2       3       4       5       6           7         8       9         10      11       12
0  foo_14  foo_23  foo_16   foo_5   foo_6   foo_2   foo_8        None      None    None      None    None     None
1  foo_18  foo_17  foo_14    None    None    None    None        None      None    None      None    None     None
2   foo_4  foo_24  foo_15   foo_6   foo_8   foo_1  foo_25      foo_19     foo_3  foo_16   foo_5      None     None
3  foo_23  foo_13   foo_5  foo_12  foo_16  foo_14   foo_1      foo_20  foo_2       None      None    None     None
4   foo_5  foo_21  foo_22   foo_1  foo_10  foo_23   foo_6  foo_13          None    None      None    None     None
5  foo_13   foo_5   foo_2   foo_8  foo_23   foo_4  foo_16      foo_10     foo_7  foo_14  foo_25      None     None
6  foo_22   foo_1   foo_7  foo_17  foo_10   foo_8   foo_6      foo_11    foo_18  foo_20    foo_14  foo_13  foo_16 
7  foo_12  foo_24  foo_12   foo_7  foo_11  foo_14   foo_9        None      None    None      None    None     None

已更改第7行的输入数据,以使Foo_12在此行中唯一:

from io import StringIO
import pandas as pd

txtfile = StringIO("""foo_14:14896|foo_23:17988|foo_16:1611|foo_5:14729|foo_6:13008|foo_2:19548|foo_8:2565
foo_18:13236|foo_17:6127|foo_14:5996
foo_4:12561|foo_24:20010|foo_15:20227|foo_6:3489|foo_8:19129|foo_1:2589|foo_25:5204|foo_19:18113|foo_3:20030|foo_16:12739|foo_5:5494  
foo_23:3606|foo_13:22588|foo_5:15104|foo_12:3307|foo_16:2039|foo_14:21537|foo_1:13178|foo_20:19090|foo_2:1140   
foo_5:10620|foo_21:11142|foo_22:13379|foo_1:16132|foo_10:9330|foo_23:13913|foo_6:8314|foo_13:4967    
foo_13:4891|foo_5:22715|foo_2:12098|foo_8:18634|foo_23:1341|foo_4:13995|foo_16:2923|foo_10:13663|foo_7:22939|foo_14:16711|foo_25:17824  
foo_22:8180|foo_1:11974|foo_7:6660|foo_17:17839|foo_10:3605|foo_8:22439|foo_6:15494|foo_11:17924|foo_18:17351|foo_20:16627|foo_14:9223|foo_13:2538|foo_16:19077 
foo_12:11381|foo_24:541|foo_13:13106|foo_7:6459|foo_11:6398|foo_14:23127|foo_9:15701""")

df = pd.read_csv(txtfile, names=['text'])

dfs = df['text'].str.split('|', expand=True).stack().str.split(':', expand=True).reset_index()
    .set_index(['level_0',0])[1].unstack()

print(dfs)

输出:

0        foo_1 foo_10 foo_11 foo_12    foo_13 foo_14 foo_15  foo_16 foo_17 foo_18  ... foo_23 foo_24   foo_25  foo_3  foo_4   foo_5  foo_6  foo_7  foo_8  foo_9
level_0                                                                            ...                                                                         
0          NaN    NaN    NaN    NaN       NaN  14896    NaN    1611    NaN    NaN  ...  17988    NaN      NaN    NaN    NaN   14729  13008    NaN   2565    NaN
1          NaN    NaN    NaN    NaN       NaN   5996    NaN     NaN   6127  13236  ...    NaN    NaN      NaN    NaN    NaN     NaN    NaN    NaN    NaN    NaN
2         2589    NaN    NaN    NaN       NaN    NaN  20227   12739    NaN    NaN  ...    NaN  20010     5204  20030  12561  5494     3489    NaN  19129    NaN
3        13178    NaN    NaN   3307     22588  21537    NaN    2039    NaN    NaN  ...   3606    NaN      NaN    NaN    NaN   15104    NaN    NaN    NaN    NaN
4        16132   9330    NaN    NaN  4967        NaN    NaN     NaN    NaN    NaN  ...  13913    NaN      NaN    NaN    NaN   10620   8314    NaN    NaN    NaN
5          NaN  13663    NaN    NaN      4891  16711    NaN    2923    NaN    NaN  ...   1341    NaN  17824      NaN  13995   22715    NaN  22939  18634    NaN
6        11974   3605  17924    NaN      2538   9223    NaN  19077   17839  17351  ...    NaN    NaN      NaN    NaN    NaN     NaN  15494   6660  22439    NaN
7          NaN    NaN   6398  11381     13106  23127    NaN     NaN    NaN    NaN  ...    NaN    541      NaN    NaN    NaN     NaN    NaN   6459    NaN  15701

这篇关于使用Python使用稀疏CSV数据填充Pandas Dataframe的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

How do I read an Excel file directly from Dropbox#39;s API using pandas.read_excel()?(如何使用PANDAS.READ_EXCEL()直接从Dropbox的API读取Excel文件?)
I want to realize Popen-code from Windows to Linux:(我想实现从Windows到Linux的POpen-code:)
How to call type safely on a random file in Python?(如何在Python中安全地调用随机文件上的类型?)
cannot use geometry manager pack inside . which already has slaves managed by grid(无法在内部使用几何管理器包。它已经拥有由网格管理的从属对象)
Is there any way to quot;extractquot; the dtype conversion functionality from pandas read_csv?(有没有办法从 pandas Read_CSV中提取数据类型转换功能?)
Highlighting rows based on a condition(根据条件突出显示行)