提升稀疏矩阵的幂

Raise the power of a Sparse Matrix(提升稀疏矩阵的幂)
本文介绍了提升稀疏矩阵的幂的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有一个10001行+10001列(有许多0)的稀疏矩阵,

我正在尝试提高此稀疏矩阵的能力

A = [[1,1],[1,0]]
AS = sparse.csr_matrix(A)
AS

def matrixMul(AS, n):
    if(n <= 1):
        return AS
    else:
        return np.matmul(matrixMul(AS, n-1), AS)

matrixMul(AS, 10)

如果我提高2的幂,预期结果应该是 [[2,1] [1,1]]

我想查找为^10

我应该调用什么函数?我已尝试上面的代码,但收到此错误。

谢谢。

ValueError回溯(最近调用 最后)在()中 9返回np.matmul(matrixMul(as,n-1),as) 10个 ->;11 matrixMul(as,10)

矩阵中的8帧Mul(as,n) 7退回为 其他8项: ->;9返回np.matmul(matrixMul(as,n-1),as) 10个 11 matrixMul(as,10)

ValueError:matmul:输入操作数0没有足够的维度 (有0,签名为(n,k)的gufunc核,(k,m?)->;(n?,m?)需要%1)

推荐答案

In [3]: from scipy import sparse
In [4]: A = [[1,1],[1,0]]
   ...: AS = sparse.csr_matrix(A)
In [5]: AS
Out[5]: 
<2x2 sparse matrix of type '<class 'numpy.int64'>'
    with 3 stored elements in Compressed Sparse Row format>
In [6]: AS.A
Out[6]: 
array([[1, 1],
       [1, 0]])
In [7]: (AS@AS@AS).A
Out[7]: 
array([[3, 2],
       [2, 1]])

@映射到AS.__matmul__,但np.matmul不以这种方式委派它。

In [8]: np.matmul(AS,AS)
Traceback (most recent call last):
  File "<ipython-input-8-37972b025121>", line 1, in <module>
    np.matmul(AS,AS)
ValueError: matmul: Input operand 0 does not have enough dimensions (has 0, gufunc core with signature (n?,k),(k,m?)->(n?,m?) requires 1)

更正:

In [9]: def matrixMul(AS, n):
   ...:     if(n <= 1):
   ...:         return AS
   ...:     else:
   ...:         return matrixMul(AS, n-1)@ AS
   ...: 
In [10]: matrixMul(AS,3)
Out[10]: 
<2x2 sparse matrix of type '<class 'numpy.int64'>'
    with 4 stored elements in Compressed Sparse Row format>
In [11]: _.A
Out[11]: 
array([[3, 2],
       [2, 1]])
In [12]: matrixMul(AS,10).A
Out[12]: 
array([[89, 55],
       [55, 34]])

如评论所示,**电源工作:

In [15]: (AS**10).A
Out[15]: 
array([[89, 55],
       [55, 34]])

稀疏矩阵在np.matrix上建模。*为矩阵乘法,**为矩阵幂。

这个幂时间与这个半智能显式乘法大致相同:

def foo(AS):
    AS2=AS@AS
    return AS2@AS2@AS2@AS2@AS2
In [33]: timeit foo(AS).A
865 µs ± 378 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
In [34]: timeit AS**10
767 µs ± 189 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)

这篇关于提升稀疏矩阵的幂的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Leetcode 234: Palindrome LinkedList(Leetcode 234:回文链接列表)
How do I read an Excel file directly from Dropbox#39;s API using pandas.read_excel()?(如何使用PANDAS.READ_EXCEL()直接从Dropbox的API读取Excel文件?)
subprocess.Popen tries to write to nonexistent pipe(子进程。打开尝试写入不存在的管道)
I want to realize Popen-code from Windows to Linux:(我想实现从Windows到Linux的POpen-code:)
Reading stdout from a subprocess in real time(实时读取子进程中的标准输出)
How to call type safely on a random file in Python?(如何在Python中安全地调用随机文件上的类型?)