本文介绍了正在使用--preload初始化DaskWorker中的全局任务模块?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我试图实现类似于这些问题(Initializing state on dask-distributed workers,Setting up Dask worker with variable)的内容,其中我有一个(相对)大的模型,我希望在接受需要该模型的任务的工作线程子集上预初始化该模型。理想情况下,我甚至不希望客户端计算机具有该模型。
在发现这些问题之前,我最初的尝试是在共享模块worker_task.model
中定义delayed
任务,并在工作程序的--preload
脚本中为该任务分配一个模块全局变量(例如worker_tasks.model.model
)以供该任务使用;然而,由于某种原因,这并不起作用-该变量在预加载脚本中设置,但在调用该任务时仍为None
。
init_Model_worker.py:
import logging
from uuid import uuid4
from worker_tasks import model
def dask_setup(worker):
model.model = f'<mock model {uuid4()}>'
logger = logging.getLogger('distributed')
logger.warning(f'model = {model.model}')
worker_tasks/model.py:
import logging
import random
from time import sleep
from uuid import uuid4
import dask
model = None
@dask.delayed
def compute_clinical(inp):
if model is None:
raise RuntimeError('Model not initialized.')
sleep(random.uniform(3, 17))
return {
'result': random.choice((True, False)),
'confidence': random.uniform(0, 1)
}
这是我启动它并将某些内容提交给计划程序时的工作日志:
> dask-worker --preload init_model_worker.py tcp://scheduler:8786 --name model-worker
distributed.utils - INFO - Reload module init_model_worker from .py file
distributed.nanny - INFO - Start Nanny at: 'tcp://172.28.0.4:41743'
distributed.diskutils - INFO - Found stale lock file and directory '/worker-epptq9sh', purging
distributed.utils - INFO - Reload module init_model_worker from .py file
distributed - WARNING - model = <mock model faa41af0-d925-46ef-91c9-086093d37c71>
distributed.worker - INFO - Start worker at: tcp://172.28.0.4:37973
distributed.worker - INFO - Listening to: tcp://172.28.0.4:37973
distributed.worker - INFO - nanny at: 172.28.0.4:41743
distributed.worker - INFO - bokeh at: 172.28.0.4:37766
distributed.worker - INFO - Waiting to connect to: tcp://scheduler:8786
distributed.worker - INFO - -------------------------------------------------
distributed.worker - INFO - Threads: 4
distributed.worker - INFO - Memory: 1.93 GB
distributed.worker - INFO - Local Directory: /worker-mhozo9ru
distributed.worker - INFO - -------------------------------------------------
distributed.worker - INFO - Registered to: tcp://scheduler:8786
distributed.worker - INFO - -------------------------------------------------
distributed.core - INFO - Starting established connection
distributed.worker - WARNING - Compute Failed
Function: compute_clinical
args: ('mock')
kwargs: {}
Exception: RuntimeError('Model not initialized.')
您可以看到,重新加载预加载脚本后,model
是<mock model faa41af0-d925-46ef-91c9-086093d37c71>
;但当我尝试从任务中调用它时,得到None
。
我将尝试根据对其他问题的回答来实施解决方案,但我有几个与Worker预加载相关的问题:
- 为什么在预加载脚本中分配任务后,调用任务时模型
None
会出现? - 是否一般建议避免在Worker
--preload
脚本中执行此类操作?从客户端调用工作进程状态的初始化是否更好?如果是,为什么?
推荐答案
我怀疑模型变量会立即绑定到您的函数中,但是它会序列化函数。您可以尝试执行以下操作:
@dask.delayed
def compute_clinical(inp):
from worker_tasks.model import model
if model is None:
raise RuntimeError('Model not initialized.')
或者,与其将变量分配给全局模块作用域(这在Python中可能很难理解),不如尝试将其分配给Worker本身。
from dask.distributed import get_worker
def dask_setup(worker):
worker.model = f'<mock model {uuid4()}>'
@dask.delayed
def compute_clinical(inp):
if get_worker().model is None:
raise RuntimeError('Model not initialized.')
这篇关于正在使用--preload初始化DaskWorker中的全局任务模块?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!