本文介绍了球面坐标的计算的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我不得不说,我很害怕,也很惊讶我对基础数学知之甚少。本质上,我得到的是一个原点(0,0,0),我知道圆的半径(10),我知道两个角度(theta和phi)。根据这个假设,我想计算球面上的投影点。我通过阅读https://stackoverflow.com/a/969880/1230358、https://stackoverflow.com/a/36369852/1230358、http://tutorial.math.lamar.edu/Classes/CalcII/SphericalCoords.aspx和https://en.wikipedia.org/wiki/Spherical_coordinate_system的答案得出了底层代码。
我当前的代码:
#!/usr/bin/env python3
import math
PI = math.pi
PI_2 = PI / 2
def calc_sphere_coordinates(radius, phi, theta):
# see: https://stackoverflow.com/a/969880/1230358
# see: https://stackoverflow.com/q/19673067/1230358
# see: http://mathinsight.org/spherical_coordinates
# see: https://en.wikipedia.org/wiki/Spherical_coordinate_system
# see: http://tutorial.math.lamar.edu/Classes/CalcII/SphericalCoords.aspx
# φ phi is the polar angle, rotated down from the positive z-axis (slope)
# θ theta is azimuthal angle, the angle of the rotation around the z-axis (aspect)
# z
# | x
# | /
# |/
# +-------- y
# both angles need to be in radians, not degrees!
theta = theta * PI / 180
phi = phi * PI / 180
x = radius * math.sin(phi) * math.cos(theta)
y = radius * math.sin(phi) * math.sin(theta)
z = radius * math.cos(phi)
return (x, y, z)
if __name__ == "__main__":
# calculate point position in hemisphere by rotating down from positive z-axis
for i in (10, 20, 30, 40, 50, 60, 70 , 80, 90):
print(calc_sphere_coordinates(10, i, 0))
print("-"*10)
# calculate point position in hemisphere by rotating around the z axis
for i in (10, 20, 30, 40, 50, 60, 70 , 80, 90):
print(calc_sphere_coordinates(10, 0, i))
print("-"*10)
# calculate point position by rotating in both directions
for i in (10, 20, 30, 40, 50, 60, 70 , 80, 90):
print(calc_sphere_coordinates(10, i, 90-i))
代码输出如下:
(1.7364817766693033, 0.0, 9.84807753012208)
(3.420201433256687, 0.0, 9.396926207859085)
(4.999999999999999, 0.0, 8.660254037844387)
(6.4278760968653925, 0.0, 7.660444431189781)
(7.66044443118978, 0.0, 6.427876096865393)
(8.660254037844386, 0.0, 5.000000000000001)
(9.396926207859083, 0.0, 3.4202014332566884)
(9.84807753012208, 0.0, 1.7364817766693041)
(10.0, 0.0, 6.123233995736766e-16)
----------
(0.0, 0.0, 10.0)
(0.0, 0.0, 10.0)
(0.0, 0.0, 10.0)
(0.0, 0.0, 10.0)
(0.0, 0.0, 10.0)
(0.0, 0.0, 10.0)
(0.0, 0.0, 10.0)
(0.0, 0.0, 10.0)
(0.0, 0.0, 10.0)
----------
(0.30153689607045814, 1.7101007166283433, 9.84807753012208)
(1.16977778440511, 3.2139380484326963, 9.396926207859085)
(2.5, 4.330127018922192, 8.660254037844387)
(4.131759111665348, 4.92403876506104, 7.660444431189781)
(5.868240888334652, 4.92403876506104, 6.427876096865393)
(7.5, 4.330127018922192, 5.000000000000001)
(8.83022221559489, 3.2139380484326963, 3.4202014332566884)
(9.69846310392954, 1.7101007166283433, 1.7364817766693041)
(10.0, 0.0, 6.123233995736766e-16)
(10.0, 0.0, 6.123233995736766e-16)
行的z坐标不应该是0
而不是6.123233995736766e-16
吗?无论使用什么角度(0.0, 0.0, 10.0)
,绕z轴旋转都会得到相同的结果。
推荐答案
在我看来,您的代码运行良好。老实说,人们不得不承认6.123233995736766e-16对于所有实际应用来说几乎都是0,对吗?
您的问题可以归结为
为什么math.cos(math.pi / 2.0)
不等于零
原因在于浮点数是如何在计算机中生成和存储的。尝试在python中计算0.1+0.2
。惊讶?!如果您想了解更多信息,请访问Google浮点错误或任何相关内容。
这篇关于球面坐标的计算的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!