本文介绍了如何基于多个条件将1个 pandas 数据帧合并或合并到另一个 pandas 数据帧的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有两个数据帧:
df1和df2,df1用作df2的引用或查找文件。这意味着我们需要使用df1的每一行与df2的每一行进行匹配,然后将df1合并到df2中,然后输出新的df2。
df1:
RB BeginDate EndDate Valindex0
0 00 19000100 19811231 45
1 00 19820100 19841299 47
2 00 19850100 20010699 50
3 00 20010700 99999999 39
df2:
RB IssueDate gs
0 L3 19990201 8
1 00 19820101 G
2 48 19820101 G
3 50 19820101 G
4 50 19820101 G
5 00 19860101 G
6 52 19820101 G
7 53 19820101 G
8 00 19500201 G
如何根据条件合并这两个数据帧:
if df1['BeginDate'] <= df2['IssueDate'] <= df1['EndDate'] and df1['RB']==df2['RB']:
merge the value of df1['Valindex0'] to df2
请注意,最终输出是将df1合并到df2中,因为df1就像是df2的引用或查找文件。这意味着我们需要使用df1的每一行与df2的每一行进行匹配,然后输出新的df2
输出应如下所示:
df2:
RB IssueDate gs Valindex0
0 L3 19990201 8 None
1 00 19820101 G 47 # df2['RB']==df1['RB'] and df2['IssueDate'] between df1['BeginDate'] and df1['EndDate'] of this row
2 48 19820101 G None
3 50 19820101 G None
4 50 19820101 G None
5 00 19860101 G 50
6 52 19820101 G None
7 53 19820101 G None
8 00 19500201 G 45
我知道有一种方法可以做到这一点,但它非常慢,特别是当d1的长度很大时:
conditions = []
for index, row in df1.iterrows():
conditions.append((df2['IssueDate']>= df1['BeginDate']) &
(df2['IssueDate']<= df1['BeginDate'])&
(df2['RB']==df1['RB']))
df2['Valindex0'] = np.select(conditions, df1['Valindex0'], default=None)
有没有更快的解决方案?
推荐答案
使用IntervalIndex-
idx = pd.IntervalIndex.from_arrays(df1['BeginDate'],df1['EndDate'],closed='both')
for x in df1['RB'].unique():
mask = df2['RB']==x
df2.loc[mask, 'Valindex0'] = df1.loc[idx.get_indexer(df2.loc[mask, 'IssueDate']), 'Valindex0'].values
输出
RB IssueDate gs Valindex0
0 L3 19990201 8 NaN
1 00 19820101 G 47.0
2 48 19820101 G NaN
3 50 19820101 G NaN
4 50 19820101 G NaN
5 00 19860101 G 50.0
6 52 19820101 G NaN
7 53 19820101 G NaN
8 00 19500201 G 45.0
这篇关于如何基于多个条件将1个 pandas 数据帧合并或合并到另一个 pandas 数据帧的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!