本文介绍了在海上matplotlib中为多个地块创建单个图例的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在使用"iris.csv"数据制作盒子图。我试图通过测量将数据分解成多个数据帧(即花瓣长度、花瓣宽度、花瓣长度、花瓣宽度),然后在forloop上制作盒子图,从而添加子图。
最后,我想一次为所有的盒子图添加一个通用图例。但是,我不能做这件事。我已经使用几个堆栈溢出问题尝试了几个教程和方法,但我无法修复它。
以下是我的代码:
import seaborn as sns
from matplotlib import pyplot
iris_data = "iris.csv"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
dataset = read_csv(iris_data, names=names)
# Reindex the dataset by species so it can be pivoted for each species
reindexed_dataset = dataset.set_index(dataset.groupby('class').cumcount())
cols_to_pivot = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width']
# empty dataframe
reshaped_dataset = pd.DataFrame()
for var_name in cols_to_pivot:
pivoted_dataset = reindexed_dataset.pivot(columns='class', values=var_name).rename_axis(None,axis=1)
pivoted_dataset['measurement'] = var_name
reshaped_dataset = reshaped_dataset.append(pivoted_dataset, ignore_index=True)
## Now, lets spit the dataframe into groups by-measurements.
grouped_dfs_02 = []
for group in reshaped_dataset.groupby('measurement') :
grouped_dfs_02.append(group[1])
## make the box plot of several measured variables, compared between species
pyplot.figure(figsize=(20, 5), dpi=80)
pyplot.suptitle('Distribution of floral traits in the species of iris')
sp_name=['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
setosa = mpatches.Patch(color='red')
versi = mpatches.Patch(color='green')
virgi = mpatches.Patch(color='blue')
my_pal = {"Iris-versicolor": "g", "Iris-setosa": "r", "Iris-virginica":"b"}
plt_index = 0
# for i, df in enumerate(grouped_dfs_02):
for group_name, df in reshaped_dataset.groupby('measurement'):
axi = pyplot.subplot(1, len(grouped_dfs_02), plt_index + 1)
sp_name=['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
df_melt = df.melt('measurement', var_name='species', value_name='values')
sns.boxplot(data=df_melt, x='species', y='values', ax = axi, orient="v", palette=my_pal)
pyplot.title(group_name)
plt_index += 1
# Move the legend to an empty part of the plot
pyplot.legend(title='species', labels = sp_name,
handles=[setosa, versi, virgi], bbox_to_anchor=(19, 4),
fancybox=True, shadow=True, ncol=5)
pyplot.show()
情节如下:
如何在主画面外的"Main字幕"旁添加常用图例?
推荐答案
若要定位图例,请务必将loc
参数设置为锚点。(缺省的loc
是'best'
,这意味着您事先不知道它会在哪里结束)。这些位置从0,0
是当前AX的左下角,到1,1
:当前AX的左上角。这不包括标题等的填充,因此值可能会超出0, 1
范围。"当前AX"是最后一个激活的AX。
plt.gcf().legend
,而不是plt.legend
(使用轴),plt.gcf().legend
使用"Figure"。然后,坐标0,0
在整个图的左下角("图")和1,1
在右上角。缺点是不会为图例创建额外的空间,因此您需要手动设置顶部填充(例如plt.gcf().subplots_adjust(top=0.8)
)。缺点是您不能再使用plt.tight_layout()
,并且更难将图例与轴对齐。
import seaborn as sns
from matplotlib import pyplot as plt
from matplotlib import patches as mpatches
import pandas as pd
dataset = sns.load_dataset("iris")
# Reindex the dataset by species so it can be pivoted for each species
reindexed_dataset = dataset.set_index(dataset.groupby('species').cumcount())
cols_to_pivot = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']
# empty dataframe
reshaped_dataset = pd.DataFrame()
for var_name in cols_to_pivot:
pivoted_dataset = reindexed_dataset.pivot(columns='species', values=var_name).rename_axis(None, axis=1)
pivoted_dataset['measurement'] = var_name
reshaped_dataset = reshaped_dataset.append(pivoted_dataset, ignore_index=True)
## Now, lets spit the dataframe into groups by-measurements.
grouped_dfs_02 = []
for group in reshaped_dataset.groupby('measurement'):
grouped_dfs_02.append(group[1])
## make the box plot of several measured variables, compared between species
plt.figure(figsize=(20, 5), dpi=80)
plt.suptitle('Distribution of floral traits in the species of iris')
sp_name = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
setosa = mpatches.Patch(color='red')
versi = mpatches.Patch(color='green')
virgi = mpatches.Patch(color='blue')
my_pal = {"versicolor": "g", "setosa": "r", "virginica": "b"}
plt_index = 0
# for i, df in enumerate(grouped_dfs_02):
for group_name, df in reshaped_dataset.groupby('measurement'):
axi = plt.subplot(1, len(grouped_dfs_02), plt_index + 1)
sp_name = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
df_melt = df.melt('measurement', var_name='species', value_name='values')
sns.boxplot(data=df_melt, x='species', y='values', ax=axi, orient="v", palette=my_pal)
plt.title(group_name)
plt_index += 1
# Move the legend to an empty part of the plot
plt.legend(title='species', labels=sp_name,
handles=[setosa, versi, virgi], bbox_to_anchor=(1, 1.23),
fancybox=True, shadow=True, ncol=5, loc='upper right')
plt.tight_layout()
plt.show()
这篇关于在海上matplotlib中为多个地块创建单个图例的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!