什么是自适应平均池,它是如何工作的?

What is Adaptive average pooling and How does it work?(什么是自适应平均池,它是如何工作的?)
本文介绍了什么是自适应平均池,它是如何工作的?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

最近,当我尝试实现AlexNet时,我在Pytorch中遇到了一个方法。 我不明白它是怎么运作的。请举几个例子解释一下背后的想法。在神经网络功能方面,它与Maxpooling或Average Poling有何不同

nn.AdaptiveAvgPool2d((6,6))

推荐答案

在平均池化或最大池化中,基本上由您自己设置步长和内核大小,并将它们设置为超参数。如果您碰巧更改了输入大小,则必须重新配置它们。

另一方面,在自适应池中,我们改为指定输出大小。并自动选择步长和内核大小以适应需要。以下公式用于计算源代码中的值。

Stride = (input_size//output_size)  
Kernel size = input_size - (output_size-1)*stride  
Padding = 0

这篇关于什么是自适应平均池,它是如何工作的?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Leetcode 234: Palindrome LinkedList(Leetcode 234:回文链接列表)
How do I read an Excel file directly from Dropbox#39;s API using pandas.read_excel()?(如何使用PANDAS.READ_EXCEL()直接从Dropbox的API读取Excel文件?)
subprocess.Popen tries to write to nonexistent pipe(子进程。打开尝试写入不存在的管道)
I want to realize Popen-code from Windows to Linux:(我想实现从Windows到Linux的POpen-code:)
Reading stdout from a subprocess in real time(实时读取子进程中的标准输出)
How to call type safely on a random file in Python?(如何在Python中安全地调用随机文件上的类型?)