Scipy/Numpy/SCRICKITS-基于两个数组计算精度/召回率分数

Scipy/Numpy/scikits - calculating precision/recall scores based on two arrays(Scipy/Numpy/SCRICKITS-基于两个数组计算精度/召回率分数)
本文介绍了Scipy/Numpy/SCRICKITS-基于两个数组计算精度/召回率分数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

  • 我拟合了Logistic回归模型,并使用以下内容基于训练数据集训练该模型
import scikits as sklearn
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(C=0.1, penalty='l1')
model = lr.fit(training[:,0:-1], training[:,-1)
  • 我有一个交叉验证数据集,其中包含在输入矩阵中关联的标签,可以通过
  • 访问

cv[:,-1]

  • 我针对训练好的模型运行交叉验证数据集,该模型根据预测返回0和1的列表

cv_Forecast=Model.Forecast(cv[:,0:-1])

问题

我想根据实际标签和预测标签计算准确率和召回率分数。有没有使用NumPy/Scipy/SCRICKIT来完成这项工作的标准方法?

谢谢

推荐答案

有,请参阅文档:http://scikit-learn.org/stable/modules/classes.html#classification-metrics

您还应该了解一下sklearn.metrics.classification_report实用程序:

>>> from sklearn.metrics import classification_report
>>> from sklearn.linear_model import SGDClassifier
>>> from sklearn.datasets import load_digits

>>> digits = load_digits()
>>> n_samples, n_features = digits.data.shape
>>> n_split = n_samples / 2

>>> clf = SGDClassifier().fit(digits.data[:n_split], digits.target[:n_split])

>>> predictions = clf.predict(digits.data[n_split:])
>>> expected = digits.target[n_split:]

>>> print classification_report(expected, predictions)
             precision    recall  f1-score   support

          0       0.90      0.98      0.93        88
          1       0.81      0.69      0.75        91
          2       0.94      0.98      0.96        86
          3       0.94      0.85      0.89        91
          4       0.90      0.93      0.91        92
          5       0.92      0.92      0.92        91
          6       0.92      0.97      0.94        91
          7       1.00      0.85      0.92        89
          8       0.71      0.89      0.79        88
          9       0.89      0.83      0.86        92

avg / total       0.89      0.89      0.89       899

这篇关于Scipy/Numpy/SCRICKITS-基于两个数组计算精度/召回率分数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Leetcode 234: Palindrome LinkedList(Leetcode 234:回文链接列表)
How do I read an Excel file directly from Dropbox#39;s API using pandas.read_excel()?(如何使用PANDAS.READ_EXCEL()直接从Dropbox的API读取Excel文件?)
subprocess.Popen tries to write to nonexistent pipe(子进程。打开尝试写入不存在的管道)
I want to realize Popen-code from Windows to Linux:(我想实现从Windows到Linux的POpen-code:)
Reading stdout from a subprocess in real time(实时读取子进程中的标准输出)
How to call type safely on a random file in Python?(如何在Python中安全地调用随机文件上的类型?)