本文介绍了For循环中用于创建许多交互式绘图的matplotlib(MPL_CONNECT)不起作用的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有一个for循环,它生成不同的数据帧( pandas ),然后绘制它。 我想创建许多交互式绘图,这样我就可以在我的图表中显示和隐藏不同的线。 为此,我使用了On_Pick函数(如前所述here)
问题是,当我绘制一个表时,它可以工作,并且我有交互式图例,但当我尝试在for循环中绘制多个图表时,没有图例是交互式的。
df = pd.DataFrame(np.array([[0.45,0.12,0.66,0.76,0.22],[0.22,0.24,0.12,0.56,0.34],[0.12,0.47,0.93,0.65,0.21]]),
columns=[60.1,65.5,67.3,74.2,88.5])
df['name']=['A1','B4','B7']
df=df.set_index('name')
#plot alone:
fig, ax = plt.subplots()
df.T.plot(ax=ax)
lines = ax.get_lines()
leg = ax.legend(fancybox=True, shadow=True)
lined = {} # Will map legend lines to original lines.
for legline, origline in zip(leg.get_lines(), lines):
legline.set_picker(True) # Enable picking on the legend line.
lined[legline] = origline
def on_pick(event):
#On the pick event, find the original line corresponding to the legend
#proxy line, and toggle its visibility.
legline = event.artist
origline = lined[legline]
visible = not origline.get_visible()
origline.set_visible(visible)
#Change the alpha on the line in the legend so we can see what lines
#have been toggled.
legline.set_alpha(1.0 if visible else 0.2)
fig.canvas.draw()
fig.canvas.mpl_connect('pick_event', on_pick)
plt.show()
结果:绘制我可以启用和禁用图例中的线条:
#plot many plots in for loop:
nums=[5,8,0.3]
for n in nums:
db=df*n
fig, ax = plt.subplots()
db.T.plot(ax=ax)
lines = ax.get_lines()
leg = ax.legend(fancybox=True, shadow=True)
lined = {} # Will map legend lines to original lines.
for legline, origline in zip(leg.get_lines(), lines):
legline.set_picker(True) # Enable picking on the legend line.
lined[legline] = origline
def on_pick(event):
#On the pick event, find the original line corresponding to the legend
#proxy line, and toggle its visibility.
legline = event.artist
origline = lined[legline]
visible = not origline.get_visible()
origline.set_visible(visible)
#Change the alpha on the line in the legend so we can see what lines
#have been toggled.
legline.set_alpha(1.0 if visible else 0.2)
fig.canvas.draw()
fig.canvas.mpl_connect('pick_event', on_pick)
plt.show()
结果:我得到了曲线图,但不能处理将显示哪些线。
*当我触摸线条时,它仍然交互地显示x和y值,但图例不是交互的。
我的最终目标:在matplotlib中的for循环中生成多个交互式绘图,并能够启用和禁用图例项。
推荐答案
如何同时显示它们,使用fig
作为lined
的载体
多个独立的地块
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
df = pd.DataFrame(np.array([[0.45,0.12,0.66,0.76,0.22],[0.22,0.24,0.12,0.56,0.34],[0.12,0.47,0.93,0.65,0.21]]),
columns=[60.1,65.5,67.3,74.2,88.5])
df['name']=['A1','B4','B7']
df=df.set_index('name')
#plot many plots in for loop:
nums=[5,8,0.3]
def on_pick(event):
#On the pick event, find the original line corresponding to the legend
#proxy line, and toggle its visibility.
legline = event.artist
origline = event.canvas.figure.lined[legline]
visible = not origline.get_visible()
origline.set_visible(visible)
#Change the alpha on the line in the legend so we can see what lines
#have been toggled.
legline.set_alpha(1.0 if visible else 0.2)
event.canvas.draw()
for n in nums:
db=df*n
fig, ax = plt.subplots()
db.T.plot(ax=ax)
lines = ax.get_lines()
leg = ax.legend(fancybox=True, shadow=True)
fig.lined = {} # Will map legend lines to original lines.
for legline, origline in zip(leg.get_lines(), lines):
legline.set_picker(True) # Enable picking on the legend line.
fig.lined[legline] = origline
fig.canvas.mpl_connect('pick_event', on_pick)
plt.show()
使用子图
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
df = pd.DataFrame(np.array([[0.45,0.12,0.66,0.76,0.22],[0.22,0.24,0.12,0.56,0.34],[0.12,0.47,0.93,0.65,0.21]]),
columns=[60.1,65.5,67.3,74.2,88.5])
df['name']=['A1','B4','B7']
df=df.set_index('name')
#plot many plots in for loop:
nums=[5,8,0.3]
def on_pick(event):
#On the pick event, find the original line corresponding to the legend
#proxy line, and toggle its visibility.
legline = event.artist
origline = event.canvas.figure.lined[legline]
visible = not origline.get_visible()
origline.set_visible(visible)
#Change the alpha on the line in the legend so we can see what lines
#have been toggled.
legline.set_alpha(1.0 if visible else 0.2)
event.canvas.draw()
nrows = int(np.ceil(np.sqrt(len(nums))))
ncols = int(np.ceil(len(nums) / nrows))
fig, axs = plt.subplots(nrows=nrows,ncols=ncols)
if not isinstance(axs,np.ndarray):
axs = np.array([[axs]])
if len(axs.shape)==1:
axs = np.expand_dims(axs,axis=1)
fig.lined = {} # Will map legend lines to original lines.
for idx,n in enumerate(nums):
db=df*n
ax = axs[int(idx/ncols),idx % ncols]
db.T.plot(ax=ax)
lines = ax.get_lines()
leg = ax.legend(fancybox=True, shadow=True)
for legline, origline in zip(leg.get_lines(), lines):
legline.set_picker(True) # Enable picking on the legend line.
fig.lined[legline] = origline
fig.canvas.mpl_connect('pick_event', on_pick)
plt.show()
这篇关于For循环中用于创建许多交互式绘图的matplotlib(MPL_CONNECT)不起作用的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!