如何在 Matplotlib(Numpy)中生成 MATLAB 图(插值)?

How to produce MATLAB plot (interpolation) in Matplotlib (Numpy)?(如何在 Matplotlib(Numpy)中生成 MATLAB 图(插值)?)
本文介绍了如何在 Matplotlib(Numpy)中生成 MATLAB 图(插值)?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试遵循网格网格 + 插值的 MATLAB 示例.示例代码位于 HERE.在那个网站上,我正在浏览以下示例:示例 - 在表面上显示非均匀数据.

I am trying to follow a MATLAB example of meshgrid + interpolation. The example code is found HERE. On that site, I am going through the following example: Example – Displaying Nonuniform Data on a Surface.

现在,我想在 Python (Numpy + Matplotlib) 中生成与 MATLAB 中显示的类似的图.这是 MATLAB 生成的图:

Now, I would like to produce a similar plot in Python (Numpy + Matplotlib) to what is shown there in MATLAB. This is the plot that MATLAB produces:

我在 Python 中执行此操作时遇到问题.这是我在 Python 2.7 中的代码和输出:

I am having trouble with doing this in Python. Here is my code and my output in Python 2.7:

from matplotlib.mlab import griddata
import matplotlib.pyplot as plt
from matplotlib import cm
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

x = np.random.rand(200)*16 - 8
y = np.random.rand(200)*16 - 8
r = np.sqrt(x**2 + y**2)
z = np.sin(r)/r

xi = np.linspace(min(x),max(x), 100)
yi = np.linspace(min(y),max(y), 200)

X,Y = np.meshgrid(xi,yi)

Z = griddata(x, y, z, X, Y, interp='linear')

fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1,cmap=cm.jet)

这是我尝试使用 matplotlib 和 NumPy 执行此操作的结果..

Here is the result of my attempt at doing this with matplotlib and NumPy..

有人可以帮我在 matplotlib 中重新创建 MATLAB 图,作为网格图还是曲面图?

Could someone please help me recreate the MATLAB plot in matplotlib, as either a mesh or a surface plot?

推荐答案

所以看起来外观的主要差异与matlab默认绘制的行数有关,可以通过增加rstride来调整cstride.在颜色方面,为了正确缩放颜色图,最好在这种情况下设置限制,vminvmax 因为当自动设置时,它会使用 Z 的最小值和最大值,但在这种情况下,它们都是 nan,因此您可以使用 np.nanminnp.nanmax.

So it seems that the major differences in the look have to do with the default number of lines plotted by matlab, which can be adjusted by increasing rstride and cstride. In terms of color, in order for the colormap to be scaled properly it is probably best in this case to set your limits, vmin and vmax because when automatically set, it will use the min and max of Z, but in this case, they are both nan, so you could use np.nanmin and np.nanmax.

from matplotlib.mlab import griddata
import matplotlib.pyplot as plt
from matplotlib import cm
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

x = np.random.rand(200)*16 - 8
y = np.random.rand(200)*16 - 8
r = np.sqrt(x**2 + y**2)
z = np.sin(r)/r

xi = np.linspace(min(x),max(x), 100)
yi = np.linspace(min(y),max(y), 200)

X,Y = np.meshgrid(xi,yi)

Z = griddata(x, y, z, X, Y, interp='linear')

fig = plt.figure()
ax = fig.gca(projection='3d')

surf = ax.plot_surface(X, Y, Z, rstride=5, cstride=5, cmap=cm.jet, vmin=np.nanmin(Z), vmax=np.nanmax(Z), shade=False)
scat = ax.scatter(x, y, z)

不幸的是,在 matplotlib 中我遇到了一些烦人的重叠/剪切"问题,其中 Axes3d 并不总是正确地确定对象的显示顺序.

In matplotlib unfortunately I get some annoying overlapping/'clipping' problems, where Axes3d doesn't always properly determine the order in which object should be displayed.

这篇关于如何在 Matplotlib(Numpy)中生成 MATLAB 图(插值)?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Elementwise multiplication of several arrays in Python Numpy(几个数组在Python Numpy中的元素乘法)
cannot use geometry manager pack inside . which already has slaves managed by grid(无法在内部使用几何管理器包。它已经拥有由网格管理的从属对象)
Getting the last element of a level in a multiindex(获取多索引中某个级别的最后一个元素)
GridSearchCV.best_score not same as cross_val_score(GridSearchCV.best_estimator_)(GridSearchCV.Best_Score不同于CROSS_VAL_Score(GridSearchCV.Best_Estiator_))
Sklearn preprocessing - PolynomialFeatures - How to keep column names/headers of the output array / dataframe(SkLearning预处理-PolynomialFeature-如何保留输出数组/数据帧的列名/标题)
Complete a partial mesh and make it watetight(完成部分网格并使其水密)