对集合列表进行减法

Subtraction over a list of sets(对集合列表进行减法)
本文介绍了对集合列表进行减法的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

给定一个集合列表:

allsets = [set([1, 2, 4]), set([4, 5, 6]), set([4, 5, 7])]

什么是计算与其他集合不重叠的元素集合的相应列表的pythonic方法?

What is a pythonic way to compute the corresponding list of sets of elements having no overlap with other sets?

only = [set([1, 2]), set([6]), set([7])]

有没有办法通过列表理解来做到这一点?

Is there a way to do this with a list comprehension?

推荐答案

为避免二次运行时,您需要进行初始传递以确定哪些元素出现在多个集合中:

To avoid quadratic runtime, you'd want to make an initial pass to figure out which elements appear in more than one set:

import itertools
import collections
element_counts = collections.Counter(itertools.chain.from_iterable(allsets))

然后您可以简单地制作一个集合列表,保留所有只出现一次的元素:

Then you can simply make a list of sets retaining all elements that only appear once:

nondupes = [{elem for elem in original if element_counts[elem] == 1}
            for original in allsets]

<小时>

或者,我们可以不直接从 element_counts 构造 nondupes,而是进行额外的传递来构造一组恰好出现在一个输入中的所有元素.这需要一个额外的语句,但它允许我们利用 & 运算符来设置交集,以使列表理解更短更高效:


Alternatively, instead of constructing nondupes from element_counts directly, we can make an additional pass to construct a set of all elements that appear in exactly one input. This requires an additional statement, but it allows us to take advantage of the & operator for set intersection to make the list comprehension shorter and more efficient:

element_counts = collections.Counter(itertools.chain.from_iterable(allsets))
all_uniques = {elem for elem, count in element_counts.items() if count == 1}
#                                                     ^ viewitems() in Python 2.7
nondupes = [original & all_uniques for original in allsets]

时间似乎表明使用 all_uniques 集可以显着加快整个重复消除过程.对于大量重复的输入集,Python 3 上的 3.5x 加速 左右,尽管只有 30% 加速 用于 Python 2 上的整体重复消除过程,因为更多的运行时由构造计数器控制.这种加速是相当可观的,尽管不如首先使用 element_counts 避免二次运行时那么重要.如果您使用的是 Python 2 并且此代码对速度至关重要,您可能希望使用普通的 dictcollections.defaultdict 而不是 Counter.

Timing seems to indicate that using an all_uniques set produces a substantial speedup for the overall duplicate-elimination process. It's up to about a 3.5x speedup on Python 3 for heavily-duplicate input sets, though only about a 30% speedup for the overall duplicate-elimination process on Python 2 due to more of the runtime being dominated by constructing the Counter. This speedup is fairly substantial, though not nearly as important as avoiding quadratic runtime by using element_counts in the first place. If you're on Python 2 and this code is speed-critical, you'd want to use an ordinary dict or a collections.defaultdict instead of a Counter.

另一种方法是从 element_counts 构造一个 dupes 集并使用 original - dupes 而不是 original &列表理解中的 all_uniques,正如 munk 建议.这是否比使用 all_uniques 集和 & 表现更好或更差将取决于您输入的重复程度以及您使用的 Python 版本,但它 没有 似乎无论哪种方式都有很大的不同.

Another way would be to construct a dupes set from element_counts and use original - dupes instead of original & all_uniques in the list comprehension, as suggested by munk. Whether this performs better or worse than using an all_uniques set and & would depend on the degree of duplication in your input and what Python version you're on, but it doesn't seem to make much of a difference either way.

这篇关于对集合列表进行减法的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Leetcode 234: Palindrome LinkedList(Leetcode 234:回文链接列表)
How do I read an Excel file directly from Dropbox#39;s API using pandas.read_excel()?(如何使用PANDAS.READ_EXCEL()直接从Dropbox的API读取Excel文件?)
subprocess.Popen tries to write to nonexistent pipe(子进程。打开尝试写入不存在的管道)
I want to realize Popen-code from Windows to Linux:(我想实现从Windows到Linux的POpen-code:)
Reading stdout from a subprocess in real time(实时读取子进程中的标准输出)
How to call type safely on a random file in Python?(如何在Python中安全地调用随机文件上的类型?)