PyTorch:传递 numpy 数组进行权重初始化

PyTorch: passing numpy array for weight initialization(PyTorch:传递 numpy 数组进行权重初始化)
本文介绍了PyTorch:传递 numpy 数组进行权重初始化的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我想用np数组初始化RNN的参数.

I'd like to initialize the parameters of RNN with np arrays.

在下面的示例中,我想将 w 传递给 rnn 的参数.我知道pytorch提供了很多初始化方法,比如Xavier、uniform等,但是有没有办法通过传递numpy数组来初始化参数呢?

In the following example, I want to pass w to the parameters of rnn. I know pytorch provides many initialization methods like Xavier, uniform, etc., but is there way to initialize the parameters by passing numpy arrays?

import numpy as np
import torch as nn
rng = np.random.RandomState(313)
w = rng.randn(input_size, hidden_size).astype(np.float32)

rnn = nn.RNN(input_size, hidden_size, num_layers)

推荐答案

首先,让我们注意 nn.RNN 有多个权重变量,c.f.文档:

First, let's note that nn.RNN has more than one weight variable, c.f. the documentation:

变量:

  • weight_ih_l[k] – 第 k 层的可学习输入隐藏权重,形状为 (hidden_​​size * input_size)k = 0.否则,形状是 (hidden_​​size * hidden_​​size)
  • weight_hh_l[k]k 层的可学习隐藏权重,形状为 (hidden_​​size * hidden_​​size)
  • bias_ih_l[k]k 层的可学习输入隐藏偏差,形状为 (hidden_​​size)
  • bias_hh_l[k]k-th 层的可学习 hidden-hidden 偏差,形状为 (hidden_​​size)
  • weight_ih_l[k] – the learnable input-hidden weights of the k-th layer, of shape (hidden_size * input_size) for k = 0. Otherwise, the shape is (hidden_size * hidden_size)
  • weight_hh_l[k] – the learnable hidden-hidden weights of the k-th layer, of shape (hidden_size * hidden_size)
  • bias_ih_l[k] – the learnable input-hidden bias of the k-th layer, of shape (hidden_size)
  • bias_hh_l[k] – the learnable hidden-hidden bias of the k-th layer, of shape (hidden_size)

现在,每个变量(Parameter 实例)是 nn.RNN 实例的属性.您可以通过两种方式访问​​和编辑它们,如下所示:

Now, each of these variables (Parameter instances) are attributes of your nn.RNN instance. You can access them, and edit them, two ways, as show below:

  • 方案一:按名称访问所有RNNParameter属性(rnn.weight_hh_lKrnn.weight_ih_lK等):
import torch
from torch import nn
import numpy as np

input_size, hidden_size, num_layers = 3, 4, 2
use_bias = True
rng = np.random.RandomState(313)

rnn = nn.RNN(input_size, hidden_size, num_layers, bias=use_bias)

def set_nn_parameter_data(layer, parameter_name, new_data):
    param = getattr(layer, parameter_name)
    param.data = new_data

for i in range(num_layers):
    weights_hh_layer_i = rng.randn(hidden_size, hidden_size).astype(np.float32)
    weights_ih_layer_i = rng.randn(hidden_size, hidden_size).astype(np.float32)
    set_nn_parameter_data(rnn, "weight_hh_l{}".format(i), 
                          torch.from_numpy(weights_hh_layer_i))
    set_nn_parameter_data(rnn, "weight_ih_l{}".format(i), 
                          torch.from_numpy(weights_ih_layer_i))

    if use_bias:
        bias_hh_layer_i = rng.randn(hidden_size).astype(np.float32)
        bias_ih_layer_i = rng.randn(hidden_size).astype(np.float32)
        set_nn_parameter_data(rnn, "bias_hh_l{}".format(i), 
                              torch.from_numpy(bias_hh_layer_i))
        set_nn_parameter_data(rnn, "bias_ih_l{}".format(i), 
                              torch.from_numpy(bias_ih_layer_i))

  • 方案二:通过rnn.all_weights列表属性访问所有RNNParameter属性:
    • Solution 2: Accessing all the RNN Parameter attributes through rnn.all_weights list attribute:
    • import torch
      from torch import nn
      import numpy as np
      
      input_size, hidden_size, num_layers = 3, 4, 2
      use_bias = True
      rng = np.random.RandomState(313)
      
      rnn = nn.RNN(input_size, hidden_size, num_layers, bias=use_bias)
      
      for i in range(num_layers):
          weights_hh_layer_i = rng.randn(hidden_size, hidden_size).astype(np.float32)
          weights_ih_layer_i = rng.randn(hidden_size, hidden_size).astype(np.float32)
          rnn.all_weights[i][0].data = torch.from_numpy(weights_ih_layer_i)
          rnn.all_weights[i][1].data = torch.from_numpy(weights_hh_layer_i)
      
          if use_bias:
              bias_hh_layer_i = rng.randn(hidden_size).astype(np.float32)
              bias_ih_layer_i = rng.randn(hidden_size).astype(np.float32)
              rnn.all_weights[i][2].data = torch.from_numpy(bias_ih_layer_i)
              rnn.all_weights[i][3].data = torch.from_numpy(bias_hh_layer_i)
      

      这篇关于PyTorch:传递 numpy 数组进行权重初始化的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Leetcode 234: Palindrome LinkedList(Leetcode 234:回文链接列表)
How do I read an Excel file directly from Dropbox#39;s API using pandas.read_excel()?(如何使用PANDAS.READ_EXCEL()直接从Dropbox的API读取Excel文件?)
subprocess.Popen tries to write to nonexistent pipe(子进程。打开尝试写入不存在的管道)
I want to realize Popen-code from Windows to Linux:(我想实现从Windows到Linux的POpen-code:)
Reading stdout from a subprocess in real time(实时读取子进程中的标准输出)
How to call type safely on a random file in Python?(如何在Python中安全地调用随机文件上的类型?)