pandas groupby 和过滤器

Pandas groupby and filter( pandas groupby 和过滤器)
本文介绍了 pandas groupby 和过滤器的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有数据框:

df = pd.DataFrame({'ID':[1,1,2,2,3,3], 
                   'YEAR' : [2011,2012,2012,2013,2013,2014], 
                   'V': [0,1,1,0,1,0],
                   'C':[00,11,22,33,44,55]})

我想按 ID 分组,并在每个组中选择 V = 0 的行.

I would like to group by ID, and select the row with V = 0 within each group.

这似乎不起作用:

print(df.groupby(['ID']).filter(lambda x: x['V'] == 0)) 

出现错误:

TypeError: filter 函数返回了一个 Series,但预期的是一个标量 bool

TypeError: filter function returned a Series, but expected a scalar bool

如何使用过滤器来实现目标?谢谢.

How can I use filter to achieve the goal? Thank you.

编辑:V 上的条件可能因每个组而异,例如,对于 ID 1,它可能是 V==0,对于 ID 2,它可能是 V==1,并且可以通过另一个 DF 获得此信息:

EDIT: The condition on V may vary for each group, e.g., it could be V==0 for ID 1, V==1 for ID 2, and this info can be available through another DF:

df = pd.DataFrame({'ID':[1,2,3], 
                   'V': [0,1,0])

那么如何在每个组内进行行过滤呢?

So how to do row filtering within each group?

推荐答案

我觉得groupby没必要,用boolean indexing 仅在需要 V0<的所有行时/代码>:

I think groupby is not necessary, use boolean indexing only if need all rows where V is 0:

print (df[df.V == 0])
    C  ID  V  YEAR
0   0   1  0  2011
3  33   2  0  2013
5  55   3  0  2014

但如果需要返回列 V 的至少一个值等于 0 的所有组,请添加 any,因为 filter 需要 TrueFalse 用于过滤组中的所有行:

But if need return all groups where is at least one value of column V equal 0 add any, because filter need True or False for filtering all rows in group:

print(df.groupby(['ID']).filter(lambda x: (x['V'] == 0).any())) 
    C  ID  V  YEAR
0   0   1  0  2011
1  11   1  1  2012
2  22   2  1  2012
3  33   2  0  2013
4  44   3  1  2013
5  55   3  0  2014

更好的测试是更改 groupby 的列 - 2012 的行被过滤掉,因为没有 V==0:

Better for testing is change column for groupby - row with 2012 is filter out because no V==0:

print(df.groupby(['YEAR']).filter(lambda x: (x['V'] == 0).any())) 
    C  ID  V  YEAR
0   0   1  0  2011
3  33   2  0  2013
4  44   3  1  2013
5  55   3  0  2014

如果性能很重要,请使用 GroupBy.transform布尔索引:

If performance is important use GroupBy.transform with boolean indexing:

print(df[(df['V'] == 0).groupby(df['YEAR']).transform('any')]) 
   ID  YEAR  V   C
0   1  2011  0   0
3   2  2013  0  33
4   3  2013  1  44
5   3  2014  0  55

详情:

print((df['V'] == 0).groupby(df['YEAR']).transform('any')) 
0     True
1    False
2    False
3     True
4     True
5     True
Name: V, dtype: bool

这篇关于 pandas groupby 和过滤器的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Leetcode 234: Palindrome LinkedList(Leetcode 234:回文链接列表)
How do I read an Excel file directly from Dropbox#39;s API using pandas.read_excel()?(如何使用PANDAS.READ_EXCEL()直接从Dropbox的API读取Excel文件?)
subprocess.Popen tries to write to nonexistent pipe(子进程。打开尝试写入不存在的管道)
I want to realize Popen-code from Windows to Linux:(我想实现从Windows到Linux的POpen-code:)
Reading stdout from a subprocess in real time(实时读取子进程中的标准输出)
How to call type safely on a random file in Python?(如何在Python中安全地调用随机文件上的类型?)