如何在 Python API 中使用 plotly 在 x 轴范围中位数位置绘制垂直线?

How to plot a vertical line at the x-axis range median position using plotly in Python API?(如何在 Python API 中使用 plotly 在 x 轴范围中位数位置绘制垂直线?)
本文介绍了如何在 Python API 中使用 plotly 在 x 轴范围中位数位置绘制垂直线?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试绘制一条动态定位的垂直线,以便在进行过滤时,该线会相应移动.例如,使用下面的代码,我可以在 25K 处绘制一条固定的垂直线,它使用完整的数据集作为中位数,但是当数据被过滤到美洲"时,因为 x 轴范围现在是 45K,这条线不再处于中间位置.

I'm trying to plot a vertical line that's dynamically positioned so that when filtering happens, the line will move accordingly. For example, with the below code, I can plot a stationary vertical line at 25K which works with the full dataset as the median, but when the data is filtered to "Americas" only since the x-axis range is now 45K, the line is not at the median position anymore.

那么我如何绘制一条位于 x 轴范围中间位置的垂直线?谢谢

So how can I plot a vertical line that's positioned at the x-axis range's median position? Thanks

import pandas as pd
import plotly.graph_objs as go
from plotly.offline import init_notebook_mode, iplot

init_notebook_mode(connected=True)


df = pd.read_csv('https://raw.githubusercontent.com/yankev/test/master/life-expectancy-per-GDP-2007.csv')

americas = df[(df.continent=='Americas')]
europe = df[(df.continent=='Europe')]

trace_comp0 = go.Scatter(
    x=americas.gdp_percap,
    y=americas.life_exp,
    mode='markers',
    marker=dict(size=12,
                line=dict(width=1),
                color="navy"
               ),
    name='Americas',
    text=americas.country,
    )

trace_comp1 = go.Scatter(
    x=europe.gdp_percap,
    y=europe.life_exp,
    mode='markers',
    marker=dict(size=12,
                line=dict(width=1),
                color="red"
               ),
    name='Europe',
    text=europe.country,
        )

data_comp = [trace_comp0, trace_comp1]
layout_comp = go.Layout(
    title='Life Expectancy v. Per Capita GDP, 2007',
    hovermode='closest',
    xaxis=dict(
        title='GDP per capita (2000 dollars)',
        ticklen=5,
        zeroline=False,
        gridwidth=2,
        range=[0, 50_000],
    ),
    yaxis=dict(
        title='Life Expectancy (years)',
        ticklen=5,
        gridwidth=2,
        range=[0, 90],
    ),
    shapes=[
        {
            'type': 'line',
            'x0': 25000,
            'y0': 0,
            'x1': 25000,
            'y1': 85,
            'line': {
                'color': 'black',
                'width': 1
            }
        }
    ]
)
fig_comp = go.Figure(data=data_comp, layout=layout_comp)
iplot(fig_comp)

推荐答案

在@rpanai 的回答和使用情节更新按钮的帮助下,开发了以下解决方案.检查一下.

With the help of the @rpanai's answer and using plotly update buttons, the following solution is developed. Check this.

import pandas as pd
import plotly.graph_objs as go
from plotly.offline import init_notebook_mode, iplot

init_notebook_mode(connected=True)

df = pd.read_csv('https://raw.githubusercontent.com/yankev/test/master/life-expectancy-per-GDP-2007.csv')

americas = df[(df.continent=='Americas')]
europe = df[(df.continent=='Europe')]
# med_eur = europe["gdp_percap"].median()
# med_ame = americas["gdp_percap"].median()
# med_total=pd.DataFrame(list(europe["gdp_percap"])+list(americas["gdp_percap"])).median()[0]
med_eur = europe["gdp_percap"].max()/2
med_ame = americas["gdp_percap"].max()/2
med_total=25000

trace_median0 =  go.Scatter(x=[med_total, med_total],
                            y=[0,85],
                            mode="lines",
                            legendgroup="a",
                            showlegend=False,
                            marker=dict(size=12,
                                       line=dict(width=0.8),
                                       color="green"
                                       ),
                            name="Median Total"
                            )

trace_comp1 = go.Scatter(
    x=americas.gdp_percap,
    y=americas.life_exp,
    mode='markers',
    marker=dict(size=12,
                line=dict(width=1),
                color="navy"
               ),
    name='Americas',
    text=americas.country
    )

trace_median1 =  go.Scatter(x=[med_ame, med_ame],
                            y=[0,90],
                            mode="lines",
                            legendgroup="a",
                            showlegend=False,
                            marker=dict(size=12,
                                       line=dict(width=0.8),
                                       color="navy"
                                       ),
                            name="Median Americas",
                            visible=False
                            )
trace_comp2 = go.Scatter(
    x=europe.gdp_percap,
    y=europe.life_exp,
    mode='markers',
    marker=dict(size=12,
                line=dict(width=1),
                color="red"
               ),
    name='Europe',
    text=europe.country,
        )

trace_median2 =  go.Scatter(x=[med_eur, med_eur],
                            y=[0,90],
                            mode="lines",
                            legendgroup="b",
                            showlegend=False,
                            marker=dict(size=12,
                                       line=dict(width=0.8),
                                       color="red"
                                       ),
                            name="Median Europe",
                            visible=False
                            )

data_comp = [trace_comp1,trace_median1]+[trace_comp2,trace_median2]+[trace_median0]
layout_comp = go.Layout(
    title='Life Expectancy v. Per Capita GDP, 2007',
    hovermode='closest',
    xaxis=dict(
        title='GDP per capita (2000 dollars)',
        ticklen=5,
        zeroline=False,
        gridwidth=2,
        range=[0, 50_000],
    ),
    yaxis=dict(
        title='Life Expectancy (years)',
        ticklen=5,
        gridwidth=2,
        range=[0, 90],
    ),
    showlegend=False
)
updatemenus = list([
    dict(type="buttons",
         active=-1,
         buttons=list([
            dict(label = 'Total Dataset ',
                 method = 'update',
                 args = [{'visible': [True,False,True,False,True]},
                         {'title': 'Life Expectancy v. Per Capita GDP, 2007'}]),
            dict(label = 'Americas',
                 method = 'update',
                 args = [{'visible': [True,True, False, False,False]},
                         {'title': 'Americas'}]),
            dict(label = 'Europe',
                 method = 'update',
                 args = [{'visible': [False, False,True,True,False]},
                         {'title': 'Europe'}])
        ]),
    )
])

annotations = list([
    dict(text='Trace type:', x=0, y=1.085, yref='paper', align='left', showarrow=False)
])
layout_comp['updatemenus'] = updatemenus
layout_comp['annotations'] = annotations
fig_comp = go.Figure(data=data_comp, layout=layout_comp)
iplot(fig_comp)

这篇关于如何在 Python API 中使用 plotly 在 x 轴范围中位数位置绘制垂直线?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Leetcode 234: Palindrome LinkedList(Leetcode 234:回文链接列表)
How do I read an Excel file directly from Dropbox#39;s API using pandas.read_excel()?(如何使用PANDAS.READ_EXCEL()直接从Dropbox的API读取Excel文件?)
subprocess.Popen tries to write to nonexistent pipe(子进程。打开尝试写入不存在的管道)
I want to realize Popen-code from Windows to Linux:(我想实现从Windows到Linux的POpen-code:)
Reading stdout from a subprocess in real time(实时读取子进程中的标准输出)
How to call type safely on a random file in Python?(如何在Python中安全地调用随机文件上的类型?)