TypeError:“numpy.int64"类型的对象没有 len()

TypeError: object of type #39;numpy.int64#39; has no len()(TypeError:“numpy.int64类型的对象没有 len())
本文介绍了TypeError:“numpy.int64"类型的对象没有 len()的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在 PyTorch 中从 DataSet 制作一个 DataLoader.

I am making a DataLoader from DataSet in PyTorch.

从加载所有 dtype 作为 DataFrame 开始代码>np.float64

Start from loading the DataFrame with all dtype as an np.float64

result = pd.read_csv('dummy.csv', header=0, dtype=DTYPE_CLEANED_DF)

这是我的数据集类.

from torch.utils.data import Dataset, DataLoader
class MyDataset(Dataset):
    def __init__(self, result):
        headers = list(result)
        headers.remove('classes')

        self.x_data = result[headers]
        self.y_data = result['classes']
        self.len = self.x_data.shape[0]

    def __getitem__(self, index):
        x = torch.tensor(self.x_data.iloc[index].values, dtype=torch.float)
        y = torch.tensor(self.y_data.iloc[index], dtype=torch.float)
        return (x, y)

    def __len__(self):
        return self.len

准备train_loader和test_loader

train_size = int(0.5 * len(full_dataset))
test_size = len(full_dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size])

train_loader = DataLoader(dataset=train_dataset, batch_size=16, shuffle=True, num_workers=1)
test_loader = DataLoader(dataset=train_dataset)

这是我的 csv 文件

当我尝试迭代 train_loader 时.它引发了错误

When I try to iterate over the train_loader. It raises the error

for i , (data, target) in enumerate(train_loader):
    print(i)

TypeError                                 Traceback (most recent call last)
<ipython-input-32-0b4921c3fe8c> in <module>
----> 1 for i , (data, target) in enumerate(train_loader):
      2     print(i)

/opt/conda/lib/python3.6/site-packages/torch/utils/data/dataloader.py in __next__(self)
    635                 self.reorder_dict[idx] = batch
    636                 continue
--> 637             return self._process_next_batch(batch)
    638 
    639     next = __next__  # Python 2 compatibility

/opt/conda/lib/python3.6/site-packages/torch/utils/data/dataloader.py in _process_next_batch(self, batch)
    656         self._put_indices()
    657         if isinstance(batch, ExceptionWrapper):
--> 658             raise batch.exc_type(batch.exc_msg)
    659         return batch
    660 

TypeError: Traceback (most recent call last):
  File "/opt/conda/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 138, in _worker_loop
    samples = collate_fn([dataset[i] for i in batch_indices])
  File "/opt/conda/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 138, in <listcomp>
    samples = collate_fn([dataset[i] for i in batch_indices])
  File "/opt/conda/lib/python3.6/site-packages/torch/utils/data/dataset.py", line 103, in __getitem__
    return self.dataset[self.indices[idx]]
  File "<ipython-input-27-107e03bc3c6a>", line 12, in __getitem__
    x = torch.tensor(self.x_data.iloc[index].values, dtype=torch.float)
  File "/opt/conda/lib/python3.6/site-packages/pandas/core/indexing.py", line 1478, in __getitem__
    return self._getitem_axis(maybe_callable, axis=axis)
  File "/opt/conda/lib/python3.6/site-packages/pandas/core/indexing.py", line 2091, in _getitem_axis
    return self._get_list_axis(key, axis=axis)
  File "/opt/conda/lib/python3.6/site-packages/pandas/core/indexing.py", line 2070, in _get_list_axis
    return self.obj._take(key, axis=axis)
  File "/opt/conda/lib/python3.6/site-packages/pandas/core/generic.py", line 2789, in _take
    verify=True)
  File "/opt/conda/lib/python3.6/site-packages/pandas/core/internals.py", line 4537, in take
    new_labels = self.axes[axis].take(indexer)
  File "/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/base.py", line 2195, in take
    return self._shallow_copy(taken)
  File "/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/range.py", line 267, in _shallow_copy
    return self._int64index._shallow_copy(values, **kwargs)
  File "/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/numeric.py", line 68, in _shallow_copy
    return self._shallow_copy_with_infer(values=values, **kwargs)
  File "/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/base.py", line 538, in _shallow_copy_with_infer
    if not len(values) and 'dtype' not in kwargs:
TypeError: object of type 'numpy.int64' has no len()

相关问题:
https://github.com/pytorch/pytorch/issues/10165
https://github.com/pytorch/pytorch/pull/9237
https://github.com/pandas-dev/pandas/issues/21946

问题:
如何在此处解决 pandas 问题?

推荐答案

参考:
https://github.com/pytorch/pytorch/issues/9211

只需将 .tolist() 添加到 indices 行.

Just add .tolist() to indices line.

def random_split(dataset, lengths):
    """
    Randomly split a dataset into non-overlapping new datasets of given lengths.
    Arguments:
        dataset (Dataset): Dataset to be split
        lengths (sequence): lengths of splits to be produced
    """
    if sum(lengths) != len(dataset):
        raise ValueError("Sum of input lengths does not equal the length of the input dataset!")

    indices = randperm(sum(lengths)).tolist()
    return [Subset(dataset, indices[offset - length:offset]) for offset, length in zip(_accumulate(lengths), lengths)]

这篇关于TypeError:“numpy.int64"类型的对象没有 len()的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Leetcode 234: Palindrome LinkedList(Leetcode 234:回文链接列表)
How do I read an Excel file directly from Dropbox#39;s API using pandas.read_excel()?(如何使用PANDAS.READ_EXCEL()直接从Dropbox的API读取Excel文件?)
subprocess.Popen tries to write to nonexistent pipe(子进程。打开尝试写入不存在的管道)
I want to realize Popen-code from Windows to Linux:(我想实现从Windows到Linux的POpen-code:)
Reading stdout from a subprocess in real time(实时读取子进程中的标准输出)
How to call type safely on a random file in Python?(如何在Python中安全地调用随机文件上的类型?)