根据日期将数据框拆分为两个

Split dataframe into two on the basis of date(根据日期将数据框拆分为两个)
本文介绍了根据日期将数据框拆分为两个的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有这样的 1000 行数据集

I have dataset with 1000 rows like this

 Date,      Cost,         Quantity(in ton),    Source,          Unloading Station
    01/10/2015, 7,            5.416,               XYZ,           ABC

我想根据日期拆分数据.例如截至日期 20.12.2016 是训练数据,之后是测试数据.

i want to split the data on the base of date. For e.g. till date 20.12.2016 is a training data and after that it is test data.

我应该如何拆分?有可能吗?

How should i split? Is it possible?

推荐答案

您可以通过将列转换为 pandas to_datetime 类型并将其设置为索引来轻松地做到这一点.

You can easily do that by converting your column to pandas to_datetime type and set it as index.

import pandas as pd
df['Date'] = pd.to_datetime(df['Date'])
df = df.set_index(df['Date'])
df = df.sort_index()

一旦你有了这种格式的数据,你可以简单地使用日期作为索引来创建分区,如下所示:

Once you have your data in this format, you can simply use date as index for creating partition as follows:

# create train test partition
train = df['2015-01-10':'2016-12-20']
test  = df['2016-12-21':]
print('Train Dataset:',train.shape)
print('Test Dataset:',test.shape)

这篇关于根据日期将数据框拆分为两个的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Leetcode 234: Palindrome LinkedList(Leetcode 234:回文链接列表)
How do I read an Excel file directly from Dropbox#39;s API using pandas.read_excel()?(如何使用PANDAS.READ_EXCEL()直接从Dropbox的API读取Excel文件?)
subprocess.Popen tries to write to nonexistent pipe(子进程。打开尝试写入不存在的管道)
I want to realize Popen-code from Windows to Linux:(我想实现从Windows到Linux的POpen-code:)
Reading stdout from a subprocess in real time(实时读取子进程中的标准输出)
How to call type safely on a random file in Python?(如何在Python中安全地调用随机文件上的类型?)