如何摆脱 Choropleth 的白色背景?

How to get rid of the white background of Choropleth?(如何摆脱 Choropleth 的白色背景?)
本文介绍了如何摆脱 Choropleth 的白色背景?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在使用 Potly Dashboard 构建仪表板.我使用的是深色引导主题,因此我不想要白色背景.

I am building a dashboard using Potly Dashboard. I am using a dark bootstrap theme therefore I don't want a white background.

但是,我的地图现在看起来像这样:

However, my map now looks like this:

生成它的代码如下所示:

And the code that produced it is shown below:

trace_map = html.Div(
    [
        dcc.Graph(
            id = "map",
            figure = go.Figure(
                data=go.Choropleth(
                locations=code, # Spatial coordinates
                z = df.groupby(['month']).sum()['Sales'].astype(int), 
                locationmode = 'USA-states',
                colorscale = 'Reds',
                colorbar_title = "USD",
            ), layout = go.Layout(title = 'The Cities Sold the Most Product',
                                  font = {"size": 9, "color":"White"},
                                  titlefont = {"size": 15, "color":"White"},
                                  geo_scope='usa',
                                  margin={"r":0,"t":40,"l":0,"b":0},
                                  paper_bgcolor='#4E5D6C',
                                  plot_bgcolor='#4E5D6C',
                                  )
            )
        )
    ]
)

我尝试过 paper_bgcolorplot_bgcolor 但无法成功.

I have tried paper_bgcolor, and plot_bgcolor but couldn't make it work.

理想情况下,我想实现此图像的外观(请忽略红点):

Ideally I would like to achieve how this image looks (please ignore the red dots):

推荐答案

一般:

fig.update_layout(geo=dict(bgcolor= 'rgba(0,0,0,0)'))

在你的具体例子中:

go.Layout(geo=dict(bgcolor= 'rgba(0,0,0,0)')

剧情:

代码:

import plotly.graph_objects as go

fig  = go.Figure(
                data=go.Choropleth(
                #locations=code, # Spatial coordinates
                #z = df.groupby(['month']).sum()['Sales'].astype(int), 
                locationmode = 'USA-states',
                colorscale = 'Reds',
                colorbar_title = "USD",
            ), layout = go.Layout(geo=dict(bgcolor= 'rgba(0,0,0,0)'),
                                  title = 'The Cities Sold the Most Product',
                                  font = {"size": 9, "color":"White"},
                                  titlefont = {"size": 15, "color":"White"},
                                  geo_scope='usa',
                                  margin={"r":0,"t":40,"l":0,"b":0},
                                  paper_bgcolor='#4E5D6C',
                                  plot_bgcolor='#4E5D6C',
                                  )
            )

fig.show()

您可能还想更改湖泊的颜色.但请注意,设置 lakecolor = 'rgba(0,0,0,0)' 将使湖泊与州的颜色相同,而不是背景.所以我会选择 lakecolor='#4E5D6C'.你当然可以用 bgcolor 做同样的事情,但是将它设置为 'rgba(0,0,0,0)' 会得到 rid 您特别要求的白色.

And you might want to change the color of the lakes too. But do note that setting lakecolor = 'rgba(0,0,0,0)' will give the lakes the same color as the states and not the bakground. So I'd go with lakecolor='#4E5D6C'. You could of course do the same thing with bgcolor, but setting it to 'rgba(0,0,0,0)' gets rid of the white color which you specifically asked for.

湖色图:

湖色代码:

import plotly.graph_objects as go

fig  = go.Figure(
                data=go.Choropleth(
                #locations=code, # Spatial coordinates
                #z = df.groupby(['month']).sum()['Sales'].astype(int), 
                locationmode = 'USA-states',
                colorscale = 'Reds',
                colorbar_title = "USD",
            ), layout = go.Layout(geo=dict(bgcolor= 'rgba(0,0,0,0)', lakecolor='#4E5D6C'),
                                  title = 'The Cities Sold the Most Product',
                                  font = {"size": 9, "color":"White"},
                                  titlefont = {"size": 15, "color":"White"},
                                  geo_scope='usa',
                                  margin={"r":0,"t":40,"l":0,"b":0},
                                  paper_bgcolor='#4E5D6C',
                                  plot_bgcolor='#4E5D6C',
                                  )
            )

fig.show()

我们也可以更改状态边框颜色,或者在这种情况下更神秘地称为 subunitcolor.为了更好地匹配您想要的最终结果,我们还可以为土地颜色增添趣味:

And we could just as well change the state border colors, or what is more cryptically known as subunitcolor in this context. And to better match your desired endresult we could spice up the landcolor as well:

状态边界和状态颜色,绘图:

状态边框和状态颜色,代码:

import plotly.graph_objects as go

fig  = go.Figure(
                data=go.Choropleth(
                #locations=code, # Spatial coordinates
                #z = df.groupby(['month']).sum()['Sales'].astype(int), 
                locationmode = 'USA-states',
                colorscale = 'Reds',
                colorbar_title = "USD",
            ), layout = go.Layout(geo=dict(bgcolor= 'rgba(0,0,0,0)', lakecolor='#4E5D6C',
                                          landcolor='rgba(51,17,0,0.2)',
                                          subunitcolor='grey'),
                                  title = 'The Cities Sold the Most Product',
                                  font = {"size": 9, "color":"White"},
                                  titlefont = {"size": 15, "color":"White"},
                                  geo_scope='usa',
                                  margin={"r":0,"t":40,"l":0,"b":0},
                                  paper_bgcolor='#4E5D6C',
                                  plot_bgcolor='#4E5D6C',
                                  )
            )

fig.show()

这篇关于如何摆脱 Choropleth 的白色背景?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Leetcode 234: Palindrome LinkedList(Leetcode 234:回文链接列表)
How do I read an Excel file directly from Dropbox#39;s API using pandas.read_excel()?(如何使用PANDAS.READ_EXCEL()直接从Dropbox的API读取Excel文件?)
subprocess.Popen tries to write to nonexistent pipe(子进程。打开尝试写入不存在的管道)
I want to realize Popen-code from Windows to Linux:(我想实现从Windows到Linux的POpen-code:)
Reading stdout from a subprocess in real time(实时读取子进程中的标准输出)
How to call type safely on a random file in Python?(如何在Python中安全地调用随机文件上的类型?)