如何在 Plotly 中循环创建子图,每个子图上都有几条曲线?

how to loop to create subplots in Plotly, where each subplot has a few curves on it?(如何在 Plotly 中循环创建子图,每个子图上都有几条曲线?)
本文介绍了如何在 Plotly 中循环创建子图,每个子图上都有几条曲线?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我已经在下面编写了嵌套循环以成功生成 21 个图表(每个国家/地区一个图表,例如

I already wrote below nested loops to generate 21 charts with success (one chart for each country, for example german gas austrian gas)

dfs is a dict with 21 countries names as keys and their respective gas storage dfs as values

for country in list(dfs_storage.keys()):
    df_country=dfs_storage[country]
    month = list(set(df_country['month']))
    fig = go.Figure()
    for year in set(df_country['year']):
        workingGasVolume_peryear=df_country.loc[df_country['year']==year,'workingGasVolume']
        gasInStorage_peryear=df_country.loc[df_country['year']==year,'gasInStorage']
        # Create and style traces
        fig.add_trace(go.Scatter(x=month, y=workingGasVolume_peryear, name=f'workingGasVolume{year}',
                                 line=dict(width=4,dash='dash')))
        fig.add_trace(go.Scatter(x=month, y=gasInStorage_peryear, name=f'gasInStorage{year}',
                                 line = dict(width=4)))

    # Edit the layout
    fig.update_layout(title=f'{country} workingGasVolume gasInStorage',
                       xaxis_title='Month',
                       yaxis_title='Gas Volume')

    offline.plot({'data':fig},filename=f'{country} gas storage.html',auto_open=False)

Now I am asked to put these 21 charts in one HTML file without changing each chart, they can appear vertically one after another for example

I tried the "subplots" with Plotly with below code and modified a few times but never have the desired chart, I got one single useless chart where I can't see any values.. Can anyone help me? Thanks

countries=[]
for country in list(dfs_storage.keys()):
    countries.append(country)
fig = make_subplots(
    rows=len(list(dfs_storage.keys())),cols=1,
    subplot_titles=(countries))

for country in countries:
    df_country=dfs_storage[country]
    month = list(set(df_country['month']))
    for year in set(df_country['year']):
        workingGasVolume_peryear=df_country.loc[df_country['year']==year,'workingGasVolume']
        gasInStorage_peryear=df_country.loc[df_country['year']==year,'gasInStorage']
        # Create and style traces
        fig.add_trace(go.Scatter(x=month, y=workingGasVolume_peryear, name=f'workingGasVolume{year}',
                                 line=dict(width=4,dash='dash')))
        fig.add_trace(go.Scatter(x=month, y=gasInStorage_peryear, name=f'gasInStorage{year}',
                                 line = dict(width=4)))

    # Edit the layout
# fig.update_layout(title='workingGasVolume gasInStorage',
#                    xaxis_title='Month',
#                    yaxis_title='Gas Volume')

offline.plot({'data':fig},filename='gas storage.html',auto_open=False) 

Edit 7th June: as per jayveesea's advice, I added the row and col argument under add_trace, the code is below but still has Traceback:

countries=[]
for country in list(dfs_storage.keys()):
    countries.append(country)
fig = make_subplots(
    rows=len(list(dfs_storage.keys())),cols=1,
    subplot_titles=(countries))

for i in range(len(countries)):
    country=countries[i]
    df_country=dfs_storage[country]
    month = list(set(df_country['month']))
    for year in set(df_country['year']):
        workingGasVolume_peryear=df_country.loc[df_country['year']==year,'workingGasVolume']
        gasInStorage_peryear=df_country.loc[df_country['year']==year,'gasInStorage']
        # Create and style traces
        fig.add_trace(go.Scatter(x=month, y=workingGasVolume_peryear, name=f'workingGasVolume{year}',row=i,col=1,
                                 line=dict(width=4,dash='dash')))
        fig.add_trace(go.Scatter(x=month, y=gasInStorage_peryear, name=f'gasInStorage{year}',row=i,col=1,
                                 line = dict(width=4)))

    # Edit the layout
# fig.update_layout(title='workingGasVolume gasInStorage',
#                    xaxis_title='Month',
#                    yaxis_title='Gas Volume')

offline.plot({'data':fig},filename='gas storage.html',auto_open=False)

print('the Plotly charts are saved in the same folder as the Python code')

Edit 8th June: This is the code I am running now, copied from @jayveesea's answer and only modified the name of the df

countries=[]
for country in list(dfs_storage.keys()):
    countries.append(country)
# STEP 1
fig = make_subplots(
    rows=len(countries), cols=1,
    subplot_titles=(countries))

for i, country in enumerate(countries): #enumerate here to get access to i
    years = df_country.year[df_country.country==country].unique()
    for yrs in years:
        focus = (df_country.country==country) & (df_country.year==yrs)
        month = df_country.month[focus]
        workingGasVolume_peryear = df_country.workingGasVolume[focus]
        gasInStorage_peryear = df_country.gasInStorage[focus]

        # STEP 2, notice position of arguments!
        fig.add_trace(go.Scatter(x=month, 
                                 y=workingGasVolume_peryear, 
                                 name=f'workingGasVolume{yrs}',
                                 line=dict(width=4,dash='dash')),
                      row=i+1, #index for the subplot, i+1 because plotly starts with 1
                      col=1)
        fig.add_trace(go.Scatter(x=month, 
                                 y=gasInStorage_peryear, 
                                 name=f'gasInStorage{yrs}',
                                 line = dict(width=4)),
                      row=i+1,
                      col=1)      
fig.show()

Yet I still have Traceback message

Traceback (most recent call last):

  File "<ipython-input-27-513826172e49>", line 43, in <module>
    line=dict(width=4,dash='dash')),

TypeError: 'dict' object is not callable

解决方案

To use subplots in plotly you need to:

  1. use make_subplots to initialize the layout specifying the row and column
  2. then use row and col as arguments to fig.add_trace. NOTE: subplots row and columns start at 1 (not zero)

In your case, step2 is where you are getting stuck. Initially this part was missing (first post), but now in your update it's added in as an argument to go.Scatter. Carefully look over the examples here as the differences are just commas and parentheses and their placement.

To clarify, this:

fig.add_trace(go.Scatter(x=month, 
                         y=workingGasVolume_peryear, 
                         name=f'workingGasVolume{year}',
                         row=i,
                         col=1,
                         line=dict(width=4,dash='dash')))

should be:

fig.add_trace(go.Scatter(x=month, 
                         y=workingGasVolume_peryear, 
                         name=f'workingGasVolume{year}',
                         line=dict(width=4,dash='dash')),
              row=i+1,
              col=1)

I'm having difficulty with your code and data, which could be on my end as I do not use dictionaries like this, but here is a working example with your data in a csv and the use of pandas. Also, I changed one of the years to a different country so that there would be another plot.

import pandas as pd
import plotly.graph_objects as go  
from plotly.subplots import make_subplots

df = pd.read_csv('someData.csv')
countries = df.country.unique()

# STEP 1
fig = make_subplots(
    rows=len(countries), cols=1,
    subplot_titles=(countries))

for i, country in enumerate(countries): #enumerate here to get access to i
    years = df.year[df.country==country].unique()
    for yrs in years:
        focus = (df.country==country) & (df.year==yrs)
        month = df.month[focus]
        workingGasVolume_peryear = df.workingGasVolume[focus]
        gasInStorage_peryear = df.gasInStorage[focus]

        # STEP 2, notice position of arguments!
        fig.add_trace(go.Scatter(x=month, 
                                 y=workingGasVolume_peryear, 
                                 name=f'workingGasVolume{yrs}',
                                 line=dict(width=4,dash='dash')
                                ),
                      row=i+1, #index for the subplot, i+1 because plotly starts with 1
                      col=1)
        fig.add_trace(go.Scatter(x=month, 
                                 y=gasInStorage_peryear, 
                                 name=f'gasInStorage{yrs}',
                                 line = dict(width=4)),
                      row=i+1,
                      col=1)      
fig.show()

这篇关于如何在 Plotly 中循环创建子图,每个子图上都有几条曲线?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Leetcode 234: Palindrome LinkedList(Leetcode 234:回文链接列表)
How do I read an Excel file directly from Dropbox#39;s API using pandas.read_excel()?(如何使用PANDAS.READ_EXCEL()直接从Dropbox的API读取Excel文件?)
subprocess.Popen tries to write to nonexistent pipe(子进程。打开尝试写入不存在的管道)
I want to realize Popen-code from Windows to Linux:(我想实现从Windows到Linux的POpen-code:)
Reading stdout from a subprocess in real time(实时读取子进程中的标准输出)
How to call type safely on a random file in Python?(如何在Python中安全地调用随机文件上的类型?)