如何在带有子图的绘图图中设置辅助 x 轴及其范围?

How to set secondary x-axis and its range in plotly graph with subfigures?(如何在带有子图的绘图图中设置辅助 x 轴及其范围?)
本文介绍了如何在带有子图的绘图图中设置辅助 x 轴及其范围?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

有谁知道如何设置辅助 x 轴及其范围?

我试图在这里显示一个垂直直方图,但它目前仍然太小

import pandas as pd将 numpy 导入为 np导入 plotly.graph_objects从 plotly.subplots 导入 make_subplots从 plotly.graph_objs.layout 导入 YAxis,XAxis,Marginx1 = np.linspace(0, 4, 41)y1 = (x1-2)**3+2y2 = x1*0+2x1_sample = np.random.normal(2,0.3,5000)y1_sample = (x1_sample-2)**3+2数据 = np.column_stack((x1_sample, y1_sample))df_hist = pd.DataFrame(数据 = 数据,列 = ['x1_sample','y1_sample'])fig = make_subplots(rows=1, cols=2, specs = [[{"secondary_y": True}, {"secondary_y": True}]], Horizo​​ntal_spacing=0.2)# 子图 1## 线fig.update_yaxes(范围 = [0, 4], dtick = 1, secondary_y=False)fig.add_trace(go.Scatter(x = x1, y = y1, mode='lines'),行 = 1,列 = 1)fig.add_trace(go.Scatter(x = x1, y = y2, mode = 'lines'),行 = 1,列 = 1)## 直方图fig.update_yaxes(范围 = [0, 0.5], dtick = 0.1, secondary_y=True)fig.add_trace(go.Histogram(x = df_hist['x1_sample'], histnorm='概率', nbinsx=40),secondary_y=真,行 = 1,列 = 1)fig.add_trace(go.Histogram(y = df_hist['y1_sample'], histnorm='概率', nbinsy=40),行 = 1,列 = 1)

解决方案

要在示例中获得所需的内容,只需在设置中添加以下行:

fig.update_layout(xaxis2= {'anchor': 'y', 'overlaying': 'x', 'side': 'top'})fig.data[3].update(xaxis='x2')fig.update_layout(xaxis2_range=[-0,0.6])

第 1 行设置了一个辅助 x 轴,而第 2 行为其分配了一条轨迹.我假设 fig.data[3] 是正确的跟踪,但您可以自己检查.不出所料,第 3 行设置了辅助 x 轴的范围.

情节

完整代码:

将 numpy 导入为 np将熊猫导入为 pd导入 plotly.graph_objects从 plotly.subplots 导入 make_subplots从 plotly.graph_objs.layout 导入 YAxis,XAxis,Marginx1 = np.linspace(0, 4, 41)y1 = (x1-2)**3+2y2 = x1*0+2x1_sample = np.random.normal(2,0.3,5000)y1_sample = (x1_sample-2)**3+2数据 = np.column_stack((x1_sample, y1_sample))df_hist = pd.DataFrame(数据 = 数据,列 = ['x1_sample','y1_sample'])fig = make_subplots(rows=1, cols=2, specs = [[{"secondary_y": True}, {"secondary_y": True}]],水平间距=0.2,shared_xaxes = False)# 子图 1## 线fig.update_yaxes(范围 = [0, 4], dtick = 1, secondary_y=False)fig.add_trace(go.Scatter(x = x1, y = y1, mode='lines'),行 = 1,列 = 1)fig.add_trace(go.Scatter(x = x1, y = y2, mode = 'lines'),行 = 1,列 = 1)## 直方图fig.update_yaxes(范围 = [0, 0.5], dtick = 0.1, secondary_y=True)fig.add_trace(go.Histogram(x = df_hist['x1_sample'], histnorm='概率', nbinsx=40),secondary_y=真,行 = 1,列 = 1)fig.add_trace(go.Histogram(y = df_hist['y1_sample'], histnorm='概率', nbinsy=40),行 = 1,列 = 1)fig.update_layout(xaxis2= {'anchor': 'y', 'overlaying': 'x', 'side': 'top'})fig.data[3].update(xaxis='x2')fig.update_layout(xaxis2_range=[-0,0.6])图.show()

does anyone know how to set a secondary x-axis and also its range in plotly?

I am trying to show a vertical histogram here but it is currently still too small

Vertical histogram

import pandas as pd
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from plotly.graph_objs.layout import YAxis,XAxis,Margin

x1 = np.linspace(0, 4, 41)
y1 = (x1-2)**3+2
y2 = x1*0+2

x1_sample = np.random.normal(2,0.3,5000)
y1_sample = (x1_sample-2)**3+2
data = np.column_stack((x1_sample, y1_sample))
df_hist = pd.DataFrame(data = data, columns = ['x1_sample', 'y1_sample'])


fig = make_subplots(rows=1, cols=2, specs = [[{"secondary_y": True}, {"secondary_y": True}]], horizontal_spacing=0.2)

# Subplot 1
## Line
fig.update_yaxes(range = [0, 4], dtick = 1, secondary_y=False)
fig.add_trace(
    go.Scatter(x = x1 , y = y1, mode='lines'),
    row = 1, col = 1
)

fig.add_trace(
    go.Scatter(x = x1, y = y2, mode = 'lines'),
    row = 1, col = 1
)

## Histogram
fig.update_yaxes(range = [0, 0.5], dtick = 0.1, secondary_y=True)
fig.add_trace(
    go.Histogram(x = df_hist['x1_sample'], histnorm='probability', nbinsx=40),
    secondary_y=True,
    row = 1, col = 1
)

fig.add_trace(
    go.Histogram(y = df_hist['y1_sample'], histnorm='probability', nbinsy=40),
    row = 1, col = 1
)

解决方案

To get what you need in your example, just add the following lines to your setup:

fig.update_layout(xaxis2= {'anchor': 'y', 'overlaying': 'x', 'side': 'top'})
fig.data[3].update(xaxis='x2')
fig.update_layout(xaxis2_range=[-0,0.6])

Line 1 sets up a secondary x-axis, while line 2 assigns a trace to it. I'm assuming fig.data[3] is the correct trace but you can check that for yourself. Line 3, unsuprisingly, sets the range of the secondary x-axis.

Plot

Completecode:

import numpy as np
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from plotly.graph_objs.layout import YAxis,XAxis,Margin


x1 = np.linspace(0, 4, 41)
y1 = (x1-2)**3+2
y2 = x1*0+2

x1_sample = np.random.normal(2,0.3,5000)
y1_sample = (x1_sample-2)**3+2
data = np.column_stack((x1_sample, y1_sample))
df_hist = pd.DataFrame(data = data, columns = ['x1_sample', 'y1_sample'])


fig = make_subplots(rows=1, cols=2, specs = [[{"secondary_y": True}, {"secondary_y": True}]],
                    horizontal_spacing=0.2,
                    shared_xaxes = False)

# Subplot 1
## Line
fig.update_yaxes(range = [0, 4], dtick = 1, secondary_y=False)
fig.add_trace(
    go.Scatter(x = x1 , y = y1, mode='lines'),
    row = 1, col = 1
)

fig.add_trace(
    go.Scatter(x = x1, y = y2, mode = 'lines'),
    row = 1, col = 1
)

## Histogram
fig.update_yaxes(range = [0, 0.5], dtick = 0.1, secondary_y=True)
fig.add_trace(
    go.Histogram(x = df_hist['x1_sample'], histnorm='probability', nbinsx=40),
    secondary_y=True,
    row = 1, col = 1
)

fig.add_trace(
    go.Histogram(y = df_hist['y1_sample'], histnorm='probability', nbinsy=40),
    row = 1, col = 1
)

fig.update_layout(xaxis2= {'anchor': 'y', 'overlaying': 'x', 'side': 'top'})
fig.data[3].update(xaxis='x2')
fig.update_layout(xaxis2_range=[-0,0.6])


fig.show()

这篇关于如何在带有子图的绘图图中设置辅助 x 轴及其范围?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Leetcode 234: Palindrome LinkedList(Leetcode 234:回文链接列表)
How do I read an Excel file directly from Dropbox#39;s API using pandas.read_excel()?(如何使用PANDAS.READ_EXCEL()直接从Dropbox的API读取Excel文件?)
subprocess.Popen tries to write to nonexistent pipe(子进程。打开尝试写入不存在的管道)
I want to realize Popen-code from Windows to Linux:(我想实现从Windows到Linux的POpen-code:)
Reading stdout from a subprocess in real time(实时读取子进程中的标准输出)
How to call type safely on a random file in Python?(如何在Python中安全地调用随机文件上的类型?)