Pandas - 按列分组并将数据转换为 numpy 数组

Pandas - group by column and transform the data to numpy array(Pandas - 按列分组并将数据转换为 numpy 数组)
本文介绍了Pandas - 按列分组并将数据转换为 numpy 数组的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

Having the following data frame, group A have 4 samples, B 3 samples and C 1 sample:

  group   data_1   data_2
0     A        1        4
1     A        2        5
2     A        3        6
3     A        4        7
4     B        1        4
5     B        2        5
6     B        3        6
7     C        1        4

I would like to transform the data into numpy array, where each row is a group with all its samples and zero padding for groups that have fewer samples.

Resulting in an array like so:

[
   [[1,4],[2,5],[3,6],[4,7]], # this is A group 4 samples
   [[1,4],[2,5],[3,6],[0,0]], # this is B group 3 samples
   [[1,4],[0,0],[0,0],[0,0]], # this is C group 1 sample
]

解决方案

First is necessary add missing values - first solution with unstack and stack, counter Series is created by cumcount.

Second solution use reindex by MultiIndex.

Last use lambda function with groupby, convert to numpy array by values and last to lists:

g = df.groupby('group').cumcount()
L = (df.set_index(['group',g])
       .unstack(fill_value=0)
       .stack().groupby(level=0)
       .apply(lambda x: x.values.tolist())
       .tolist())
print (L)

[[[1, 4], [2, 5], [3, 6], [4, 7]], 
 [[1, 4], [2, 5], [3, 6], [0, 0]], 
 [[1, 4], [0, 0], [0, 0], [0, 0]]]

Another solution:

g = df.groupby('group').cumcount()
mux = pd.MultiIndex.from_product([df['group'].unique(), g.unique()])
L = (df.set_index(['group',g])
       .reindex(mux, fill_value=0)
       .groupby(level=0)['data_1','data_2']
       .apply(lambda x: x.values.tolist())
       .tolist()
)

这篇关于Pandas - 按列分组并将数据转换为 numpy 数组的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Leetcode 234: Palindrome LinkedList(Leetcode 234:回文链接列表)
How do I read an Excel file directly from Dropbox#39;s API using pandas.read_excel()?(如何使用PANDAS.READ_EXCEL()直接从Dropbox的API读取Excel文件?)
subprocess.Popen tries to write to nonexistent pipe(子进程。打开尝试写入不存在的管道)
I want to realize Popen-code from Windows to Linux:(我想实现从Windows到Linux的POpen-code:)
Reading stdout from a subprocess in real time(实时读取子进程中的标准输出)
How to call type safely on a random file in Python?(如何在Python中安全地调用随机文件上的类型?)