使用 SparkSQL 删除 MySQL 表

Dropping MySQL table with SparkSQL(使用 SparkSQL 删除 MySQL 表)
本文介绍了使用 SparkSQL 删除 MySQL 表的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我知道我们可以通过以下命令从 SparkSQL 查询或创建一个 Mysql 表.

I know that we can query or create a Mysql table from SparkSQL through the below commands.

val data = sqlContext.read.jdbc(urlstring, tablename, properties)
data.write.format("com.databricks.spark.csv").save(result_location)

val dataframe = sqlContext.read.json("users.json")
dataframe.write.jdbc(urlstring, table, properties)

这样有没有办法删除一个表?

Like that is there any way to drop a table ?

推荐答案

您可以尝试使用 JDBC 驱动程序进行基本的 DROP 操作:

You can try a basic DROP operation with the JDBC driver :

val DB_URL: String = ???
val USER: String = ???
val PASS: String = ???

def dropTable(tableName: String) = {

    import java.sql._;

    var conn: Connection = null;
    var stmt: Statement = null;

    try {
      Class.forName("com.mysql.jdbc.Driver");
      println("Connecting to a selected database...");
      conn = DriverManager.getConnection(DB_URL, USER, PASS);
      println("Connected database successfully...");
      println("Deleting table in given database...");
      stmt = conn.createStatement();
      val sql: String = s"DROP TABLE ${tableName} ";
      stmt.executeUpdate(sql);
      println(s"Table ${tableName} deleted in given database...");
    } catch {
      case e: Exception => println("exception caught: " + e);
    } finally {
      ???
    }
}

dropTable("test")

您可以使用 JDBCUtils 在 Spark 中做到这一点,但这非常简单.

You can do that with Spark using JDBCUtils but this is quite straightforward.

这篇关于使用 SparkSQL 删除 MySQL 表的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Hibernate reactive No Vert.x context active in aws rds(AWS RDS中的休眠反应性非Vert.x上下文处于活动状态)
Bulk insert with mysql2 and NodeJs throws 500(使用mysql2和NodeJS的大容量插入抛出500)
Flask + PyMySQL giving error no attribute #39;settimeout#39;(FlASK+PyMySQL给出错误,没有属性#39;setTimeout#39;)
auto_increment column for a group of rows?(一组行的AUTO_INCREMENT列?)
Sort by ID DESC(按ID代码排序)
SQL/MySQL: split a quantity value into multiple rows by date(SQL/MySQL:按日期将数量值拆分为多行)