如何将 Visual Foxpro dbfs 与 MySQL 同步?

How to sync Visual Foxpro dbfs with MySQL?(如何将 Visual Foxpro dbfs 与 MySQL 同步?)
本文介绍了如何将 Visual Foxpro dbfs 与 MySQL 同步?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

I'm trying to sync a legacy application (which stores data in VisualFoxpro dbfs) to MySQL or SqlServer 2005. This will allow us to see certain information online. I need this sync at least twice a day.

How can I do this?

解决方案

I am not aware of any off-the-shelf software to handle this, but it would not be difficult using python, my dbf module, and one of the MySQL packages.

Once you have the script written, add it to the system scheduler to run as often as you need.

Very rough example:

import dbf
import MySQLdb

legacy_table = dbf.Table(r'somepath	o	able.dbf')

connection = MySQLdb.connect(host='some_server', user='some_body', passwd='complexicate me!', db='the_db')
cursor = connection.cursor()

cusor.execute('command to recreate table') # yes, my SQL is weak  :(
                                           # other option is to use REPLACE below, and skip this step

for record in legacy_table:
    cursor.execute(
        'insert into table_name values (%s, %s, %s)',
        args=(record.name, record.age, record.comment)
        )

# for performance, executemany is better -- I _think_ this will work
cursor.executemany(
    'insert into table_name values (%s, %s, %s)',
    args = [(record.name, record.age, record.comment) for record in legacy_table])

This will hopefully get you started. Feel free to ask more questions.

这篇关于如何将 Visual Foxpro dbfs 与 MySQL 同步?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Hibernate reactive No Vert.x context active in aws rds(AWS RDS中的休眠反应性非Vert.x上下文处于活动状态)
Bulk insert with mysql2 and NodeJs throws 500(使用mysql2和NodeJS的大容量插入抛出500)
Flask + PyMySQL giving error no attribute #39;settimeout#39;(FlASK+PyMySQL给出错误,没有属性#39;setTimeout#39;)
auto_increment column for a group of rows?(一组行的AUTO_INCREMENT列?)
Sort by ID DESC(按ID代码排序)
SQL/MySQL: split a quantity value into multiple rows by date(SQL/MySQL:按日期将数量值拆分为多行)