查找sql​​中两个组合列的平均值

Find the average of two combined columns in sql(查找sql​​中两个组合列的平均值)
本文介绍了查找sql​​中两个组合列的平均值的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我想找到两列总数的平均值.我想计算 col1 的总数和 col2 的总数,然后找到平均值(它们在多少不同的行中).

I want to find the avg of the total of two columns. I want to count the total of col1 and the total of col2 then find the average(how many different rows they are in).

我设法在这个 sqlfiddle (另见下文)这是最好的方法吗?我最初认为我需要使用 avg 函数,但无法使用它来解决.

I have managed to come up with a solution in the this sqlfiddle (also see below) is this the best way? I initially thought I would need to use the avg function but couldn't work it out using this.

    CREATE TABLE test (
        id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
        uid INT,
        col1 INT,
        col2 INT
    ) DEFAULT CHARACTER SET utf8 ENGINE=InnoDB;

    INSERT INTO test (id, uid, col1, col2) VALUES
    (1,5,8,12),
    (2,1,2,3),
    (3,1,2,33),
    (4,5,25,50),
    (5,5,22,3);

    (
    SELECT ((sum(col1) + sum(col2))/count(*))
    FROM test
      WHERE uid=5
    )

推荐答案

根据定义,AVG(col1) = SUM(col1)/COUNT(*)AVG(col2) =SUM(col2)/COUNT(*),因此 (SUM(col1)+SUM(col2))/COUNT(*) = AVG(col1) + AVG(col2)).

By definition, AVG(col1) = SUM(col1)/COUNT(*) and AVG(col2) = SUM(col2)/COUNT(*), therefore (SUM(col1)+SUM(col2))/COUNT(*) = AVG(col1) + AVG(col2).

此外,加法的可交换性给了我们 (SUM(col1)+SUM(col2))/COUNT(*) = SUM(col1+col2)/COUNT(*) 因此 AVG(col1+col2).

Also, the commutativity of addition gives us (SUM(col1)+SUM(col2))/COUNT(*) = SUM(col1+col2)/COUNT(*) and hence AVG(col1+col2).

这篇关于查找sql​​中两个组合列的平均值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Execute complex raw SQL query in EF6(在EF6中执行复杂的原始SQL查询)
Hibernate reactive No Vert.x context active in aws rds(AWS RDS中的休眠反应性非Vert.x上下文处于活动状态)
Bulk insert with mysql2 and NodeJs throws 500(使用mysql2和NodeJS的大容量插入抛出500)
Flask + PyMySQL giving error no attribute #39;settimeout#39;(FlASK+PyMySQL给出错误,没有属性#39;setTimeout#39;)
auto_increment column for a group of rows?(一组行的AUTO_INCREMENT列?)
Sort by ID DESC(按ID代码排序)