mysql 计数 vs mysql SELECT,哪个更快?

Mysql count vs mysql SELECT, which one is faster?(mysql 计数 vs mysql SELECT,哪个更快?)
本文介绍了mysql 计数 vs mysql SELECT,哪个更快?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

如果我想检查一个名字,我想看看在用户表下的用户名"列中存在多少行/名字.让我们说数千...数十万,我应该使用:

If I want to do a check a name, I want to see how many rows/name exists in the "username" column under users table. Lets say thousands ... hundred of thousands, should I use:

  • 计数(名称),

  • count(name),

count(*) 或

count(*) or

SELECT username FROM users where username = 'name'

SELECT username FROM users where username = 'name'

哪个更合适?或者他们会在速度/响应方面给出相同的结果?

Which one is the more appropriate? Or they will give same result in term of speed/response?

谢谢大家,我找到了答案,count() 肯定会更快

Thanks guys, I found the answer, count() will definitely faster

这个查询是否正确

SELECT COUNT( username )
FROM users
WHERE `username` = 'tim' 

推荐答案

COUNT(*)COUNT(Name) 可能会产生不同的值.COUNT 将不包括 NULL 值,因此如果 Name 的任何实例等于 NULL,它们将不会被计算在内.

COUNT(*) and COUNT(Name) might produce different values. COUNT will not include NULL values, so if there are any instances of Name that equal NULL they will not be counted.

COUNT(*) 也会比 Count(Name) 表现得更好.通过指定 COUNT(*),您可以让优化器自由使用它希望使用的任何索引.通过指定 COUNT(Name),您将强制查询引擎使用该表,或至少使用包含 NAME 列的索引.

COUNT(*) will also perform better than Count(Name). By specifying COUNT(*) you are leaving the optimizer free to use any index it wishes. By specifying COUNT(Name) you are forcing the query engine to use the table, or at least an index that contains the NAME column.

这篇关于mysql 计数 vs mysql SELECT,哪个更快?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Hibernate reactive No Vert.x context active in aws rds(AWS RDS中的休眠反应性非Vert.x上下文处于活动状态)
Bulk insert with mysql2 and NodeJs throws 500(使用mysql2和NodeJS的大容量插入抛出500)
Flask + PyMySQL giving error no attribute #39;settimeout#39;(FlASK+PyMySQL给出错误,没有属性#39;setTimeout#39;)
auto_increment column for a group of rows?(一组行的AUTO_INCREMENT列?)
Sort by ID DESC(按ID代码排序)
SQL/MySQL: split a quantity value into multiple rows by date(SQL/MySQL:按日期将数量值拆分为多行)