问题描述
我注意到 SQLAlchemy 获取(和 ORMing)一些数据的速度很慢,而使用裸骨 SQL 获取则相当快.首先,我创建了一个包含一百万条记录的数据库:
I noticed that SQLAlchemy was slow fetching (and ORMing) some data, which was rather fast to fetch using bare bone SQL. First off, I created a database with a million records:
mysql> use foo
mysql> describe Foo;
+-------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------+------+-----+---------+-------+
| id | int(11) | NO | PRI | NULL | |
| A | int(11) | NO | | NULL | |
| B | int(11) | NO | | NULL | |
| C | int(11) | NO | | NULL | |
+-------+---------+------+-----+---------+-------+
mysql> SELECT COUNT(*) FROM Foo;
+----------+
| COUNT(*) |
+----------+
| 1000000 |
+----------+
mysql>
作为粗略的测试,查询所有 Foo 大约需要 2 秒:
As a crude test, querying all Foo's takes approximately 2 seconds:
herbert@dev0 ~ $ date; echo 'use foo; select * from Foo;' | mysql -uroot -pxxx > /dev/null; date
zo apr 20 18:48:49 CEST 2014
zo apr 20 18:48:51 CEST 2014
如果我在 python 中使用 MySQLdb 执行此操作,这大约需要 3 秒,包括 Foo 对象的构造:
If I do this in python using MySQLdb this takes a approximately 3 seconds, including the construction of Foo objects:
herbert@dev0 ~ $ python BareORM.py
query execution time: 0:00:02.198986
total time: 0:00:03.403084
哪个是输出:
#!/usr/bin/python
# -*- coding: utf-8 -*-
import MySQLdb
import sys
import time
import datetime
class Foo:
def __init__(self, a, b, c):
self.a=a; self.b=b; self.c=c;
try:
start = datetime.datetime.now()
con = MySQLdb.connect('localhost', 'root', 'xxx', 'foo')
cur = con.cursor();
cur.execute("""SELECT * FROM Foo LIMIT 1000000""")
print "query execution time: ", datetime.datetime.now()-start
foos = [];
for elem in cur:
foos.append(Foo(elem[1], elem[2], elem[3]))
con.commit()
except MySQLdb.Error, e:
print "Error %d: %s" % (e.args[0], e.args[1])
sys.exit(1)
finally:
if con: con.close()
print "total time: ", datetime.datetime.now()-start
然而,使用 SQLAlchemy 来减少样板代码,完成同样的工作大约需要 25 秒:
However, using SQLAlchemy to reduce boilerplate code, it needed approximately 25 seconds to do the same job:
herbert@dev0 ~ $ python AlchemyORM.py
total time: 0:00:24.649279
使用此代码:
import sqlalchemy
import datetime
import MySQLdb
from sqlalchemy import Column, Integer, create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker, relationship, backref
Base = declarative_base()
class Foo(Base):
__tablename__ = 'Foo'
id = Column(Integer, primary_key=True)
A = Column(Integer(unsigned=False), nullable=False)
B = Column(Integer(unsigned=False), nullable=False)
C = Column(Integer(unsigned=False), nullable=False)
engine = create_engine('mysql+mysqldb://root:xxx@localhost/foo')
Session = sessionmaker(bind=engine)
session = Session()
start = datetime.datetime.now()
foos = session.query(Foo).limit(1000000).all()
print "total time: ", datetime.datetime.now()-start
为什么 SQLAlchemy 的运行速度比裸 SQL 解决方案慢 10 倍,假设 SQLAlchemy 应该做大致相同的事情?我可以以某种方式加快速度吗?
这是一个更复杂的查询的最小工作示例,它使用预先加载连接多个表.我正在考虑只对单个表进行简单的查询,然后使用字典来创建 id->object 映射并整理一对 N 关系.但在这样做之前,我想确定 SQLAlchemy 无法表现得更好,因为从软件设计的角度来看,编写自己的 ORM 是一个坏主意.恕我直言,2 倍的减速是可以接受的(也许).
This is a minimal working example of a more complicated query, which joins several tables using eager loading. I was considering just doing simple queries on a single table, and then using dictionaries to create id->object maps and collate one-to-N relations. But before doing so, I want to be sure that SQLAlchemy is unable to perform better, because writing your own ORM is a bad idea from a software design point of view. Imho, a 2x slowdown would be acceptable (maybe).
如果您了解其他(更快的)python-SQL ORM,或者类似 BigTable 的解决方案(已经是 ORM),请随时在评论中提及它们.
If you know about other (faster) python-SQL ORM's, or maybe BigTable-alike solutions (that already are the ORM), feel free to mention them as a comment.
也用 Peewee 试过这个,结果是大约 15 秒.
Also tried this with Peewee, which resulted in ~15 s.
from peewee import *
import datetime;
database = MySQLDatabase("foo", host="localhost", port=3306, user="root", passwd="xxx")
class Foo(Model):
id = IntegerField()
A = IntegerField()
B = IntegerField()
C = IntegerField()
class Meta:
db_table = 'Foo'
database = database
start = datetime.datetime.now()
foos = Foo.select()
cnt=0;
for i in foos: cnt=cnt+1
print "total time: ", datetime.datetime.now() - start
作为对 Matthias 的回应,我尝试使用 Hibernate 在 Java 中做同样的事情,结果大约是 8 到 10 秒,不是很快,但比 25 秒快很多.代码,以一些类开始,以一些配置结束:
As a response to Matthias I tried to do the same thing in Java with Hibernate, the result is approximately 8 to 10 seconds, not exactly fast, but a lot faster than 25 seconds. The code, starting with some classes and ending with some configuration:
package herbert.hibernateorm;
import java.util.List;
import org.hibernate.Session;
import org.hibernate.Transaction;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;
public class App {
public static void main(String[] args) throws Exception {
SessionFactory factory = new Configuration().configure().buildSessionFactory();
Session session = factory.openSession();
Transaction tx = session.beginTransaction();
long start = System.currentTimeMillis();
List foos = session.createQuery("FROM Foo").list();
System.out.println(foos.size());
System.out.printf("total time: %d
", System.currentTimeMillis() - start);
session.close();
}
}
package herbert.hibernateorm;
public class Foo {
private int id, a, b, c;
public Foo() {}
public Foo(int A, int B, int C) { this.a=A; this.b=B; this.c=C; }
public int getId() { return id; }
public void setId(int id) { this.id = id; }
public int getA() { return a; }
public void setA(int a) { this.a = a; }
public int getB() { return b; }
public void setB(int b) { this.b = b; }
public int getC() { return c; }
public void setC(int c) { this.c = c; }
}
配置(分别为hibernate.cfg.xml和hibernate.hbm.xml)
The configuration (hibernate.cfg.xml and hibernate.hbm.xml respectively)
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate Configuration DTD 3.0//EN" "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
<session-factory>
<property name="hibernate.dialect">org.hibernate.dialect.MySQLDialect</property>
<property name="hibernate.connection.driver_class">com.mysql.jdbc.Driver</property>
<property name="hibernate.connection.url">jdbc:mysql://localhost:3306/foo?zeroDateTimeBehavior=convertToNull</property>
<property name="hibernate.connection.username">root</property>
<property name="hibernate.connection.password">xxx</property>
<mapping resource="hibernate.hbm.xml"/>
</session-factory>
</hibernate-configuration>
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN" "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping>
<class name="herbert.hibernateorm.Foo" table="Foo" catalog="foo">
<id name="id" type="int">
<column name="id" />
<generator class="assigned" />
</id>
<property name="a" type="int">
<column name="A" not-null="true" />
</property>
<property name="b" type="int">
<column name="B" not-null="true" />
</property>
<property name="c" type="int">
<column name="C" not-null="true" />
</property>
</class>
</hibernate-mapping>
最后是在 maven 中运行的 pom 文件:
And finally the pom file to run it all in maven:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>herbert</groupId>
<artifactId>hibernateORM</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>
<name>hibernateORM</name>
<url>http://maven.apache.org</url>
<repositories>
<repository>
<id>unknown-jars-temp-repo</id>
<name>A temporary repository created by NetBeans for libraries and jars it could not identify. Please replace the dependencies in this repository with correct ones and delete this repository.</name>
<url>file:${project.basedir}/lib</url>
</repository>
</repositories>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.21</version>
</dependency>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-core</artifactId>
<version>4.0.1.Final</version>
</dependency>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-entitymanager</artifactId>
<version>4.0.1.Final</version>
</dependency>
<dependency>
<groupId>org.hibernate.common</groupId>
<artifactId>hibernate-commons-annotations</artifactId>
<version>4.0.1.Final</version>
</dependency>
<dependency>
<groupId>nz.ac.waikato.cms.weka</groupId>
<artifactId>weka-dev</artifactId>
<version>3.7.10</version>
</dependency>
<dependency>
<groupId>commons-configuration</groupId>
<artifactId>commons-configuration</artifactId>
<version>1.9</version>
</dependency>
<dependency>
<groupId>commons-net</groupId>
<artifactId>commons-net</artifactId>
<version>3.1</version>
<classifier>examples</classifier>
</dependency>
<dependency>
<groupId>com.google.code.gson</groupId>
<artifactId>gson</artifactId>
<version>2.2.2</version>
</dependency>
<dependency>
<groupId>maven</groupId>
<artifactId>maven-jetty-plugin</artifactId>
<version>1.1</version>
<type>plugin</type>
</dependency>
<dependency>
<groupId>commons-io</groupId>
<artifactId>commons-io</artifactId>
<version>2.4</version>
</dependency>
<dependency>
<groupId>com.kenai.nbpwr</groupId>
<artifactId>org-slf4j-jdk14</artifactId>
<version>1.6.1-201106101300</version>
<type>nbm</type>
</dependency>
</dependencies>
</project>
推荐答案
这是您的 MySQL 脚本的 SQLAlchemy 版本,它的执行时间为四秒,而 MySQLdb 为三秒:
Here is the SQLAlchemy version of your MySQL script that performs in four seconds, compared to three for MySQLdb:
from sqlalchemy import Integer, Column, create_engine, MetaData, Table
import datetime
metadata = MetaData()
foo = Table(
'foo', metadata,
Column('id', Integer, primary_key=True),
Column('a', Integer(), nullable=False),
Column('b', Integer(), nullable=False),
Column('c', Integer(), nullable=False),
)
class Foo(object):
def __init__(self, a, b, c):
self.a = a
self.b = b
self.c = c
engine = create_engine('mysql+mysqldb://scott:tiger@localhost/test', echo=True)
start = datetime.datetime.now()
with engine.connect() as conn:
foos = [
Foo(row['a'], row['b'], row['c'])
for row in
conn.execute(foo.select().limit(1000000)).fetchall()
]
print "total time: ", datetime.datetime.now() - start
运行时:
total time: 0:00:04.706010
这是一个使用 ORM 完全加载对象行的脚本;通过避免使用 yield per 一次创建包含所有 1M 个对象的固定列表,SQLAlchemy master 运行 13 秒(使用 rel 0.9 时为 18 秒):
Here is a script that uses the ORM to load object rows fully; by avoiding the creation of a fixed list with all 1M objects at once using yield per, this runs in 13 seconds with SQLAlchemy master (18 seconds with rel 0.9):
import time
from sqlalchemy import Integer, Column, create_engine, Table
from sqlalchemy.orm import Session
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
class Foo(Base):
__table__ = Table(
'foo', Base.metadata,
Column('id', Integer, primary_key=True),
Column('a', Integer(), nullable=False),
Column('b', Integer(), nullable=False),
Column('c', Integer(), nullable=False),
)
engine = create_engine('mysql+mysqldb://scott:tiger@localhost/test', echo=True)
sess = Session(engine)
now = time.time()
# avoid using all() so that we don't have the overhead of building
# a large list of full objects in memory
for obj in sess.query(Foo).yield_per(100).limit(1000000):
pass
print("Total time: %d" % (time.time() - now))
然后我们可以拆分这两种方法之间的差异,并使用 ORM 仅加载单个列:
We can then split the difference between these two approaches, and load just individual columns with the ORM:
for obj in sess.query(Foo.id, Foo.a, Foo.b, Foo.c).yield_per(100).limit(1000000):
pass
以上再次运行 4 秒.
SQLAlchemy Core 的比较是对原始 MySQLdb 游标的更贴切的比较.如果您使用 ORM 但查询单个列,则在最新版本中大约需要 4 秒.
The comparison of SQLAlchemy Core is the more apt comparison to a raw MySQLdb cursor. If you use the ORM but query for individual columns, it's about four seconds in most recent versions.
在 ORM 层面,速度问题是因为在 Python 中创建对象很慢,并且 SQLAlchemy ORM 在获取这些对象时对这些对象应用了大量簿记,这是它履行使用合同所必需的,包括工作单元、身份映射、急切加载、集合等.
At the ORM level, the speed issues are because creating objects in Python is slow, and the SQLAlchemy ORM applies a large amount of bookkeeping to these objects as it fetches them, which is necessary in order for it to fulfill its usage contract, including unit of work, identity map, eager loading, collections, etc.
要显着加快查询速度,请获取单个列而不是完整对象.见技术http://docs.sqlalchemy.org/en/latest/faq/performance.html#result-fetching-slowness-orm 描述了这一点.
To speed up the query dramatically, fetch individual columns instead of full objects. See the techniques at http://docs.sqlalchemy.org/en/latest/faq/performance.html#result-fetching-slowness-orm which describe this.
为了与 PeeWee 进行比较,PW 是一个更简单的系统,功能少得多,包括它对身份映射没有任何作用.即使使用 PeeWee,尽可能简单的 ORM,它仍然需要 15 秒,这证明 cPython 与原始 MySQLdb 获取相比确实非常慢处于直线 C.
For your comparison to PeeWee, PW is a much simpler system with a lot less features, including that it doesn't do anything with identity maps. Even with PeeWee, about as simple of an ORM as is feasible, it still takes 15 seconds, which is evidence that cPython is really really slow compared to the raw MySQLdb fetch which is in straight C.
与 Java 相比,Java VM 比 cPython 快得多.Hibernate 极其复杂,但是由于 JIT,Java VM 的速度非常快,甚至所有这些复杂性最终都会运行得更快.如果您想将 Python 与 Java 进行比较,请使用 Pypy.
For comparison to Java, the Java VM is way way way faster than cPython. Hibernate is ridiculously complicated, yet the Java VM is extremely fast due to the JIT and even all that complexity ends up running faster. If you want to compare Python to Java, use Pypy.
这篇关于为什么通过 ORM 加载 SQLAlchemy 对象比通过原始 MySQLdb 游标加载行慢 5-8 倍?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!