SQL Server:跨组(而非组内)的超前/滞后分析功能

SQL Server: Lead/Lag analytic function across groups (and not within groups)(SQL Server:跨组(而非组内)的超前/滞后分析功能)
本文介绍了SQL Server:跨组(而非组内)的超前/滞后分析功能的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

抱歉,帖子太长了,但我已经提供了副本&下面粘贴示例数据和可能的解决方法.问题的相关部分在帖子的上半部分(横线上方).

Sorry for the long post, but I have provided copy & paste sample data and a possible solution approach below. The relevant part of the question is in the upper part of the post (above the horizontal rule).

我有下表

 Dt          customer_id  buy_time     money_spent
 -------------------------------------------------
 2000-01-04  100          11:00:00.00  2
 2000-01-05  100          16:00:00.00  1
 2000-01-10  100          13:00:00.00  4
 2000-01-10  100          14:00:00.00  3
 2000-01-04  200          09:00:00.00  10
 2000-01-06  200          10:00:00.00  11
 2000-01-06  200          11:00:00.00  5
 2000-01-10  200          08:00:00.00  20

并且想要一个查询来获取这个结果集

and want a query to get this result set

 Dt          Dt_next     customer_id  buy_time     money_spent
 -------------------------------------------------------------
 2000-01-04  2000-01-05  100          11:00:00.00  2
 2000-01-05  2000-01-10  100          16:00:00.00  1
 2000-01-10  NULL        100          13:00:00.00  4
 2000-01-10  NULL        100          14:00:00.00  3
 2000-01-04  2000-01-06  200          09:00:00.00  10
 2000-01-06  2000-01-10  200          10:00:00.00  11
 2000-01-06  2000-01-10  200          11:00:00.00  5
 2000-01-10  NULL        200          08:00:00.00  20

即:我希望每个客户 (customer_id) 和每天 (Dt) 同一客户访问的第二天 (Dt_next)>).

That is: I want for each costumer (customer_id) and each day (Dt) the next day the same customer has visited (Dt_next).

我已经有一个查询提供后一个结果集(数据和查询包含在水平规则下方).然而,它涉及一个左外连接和两个dense_rank聚合函数.这种方法对我来说似乎有点笨拙,我认为应该有更好的解决方案.任何指向替代解决方案的指针都非常感谢!谢谢!

I have already one query that gives the latter result set (data and query enclosed below the horizontal rule). However, it involves a left outer join and two dense_rank aggregate functions. This approach seems a bit clumsy to me and I think that there should be a better solution. Any pointers to alternative solutions highly appreciated! Thank you!

顺便说一句:我使用的是 SQL Server 11 并且该表有 >>1m 个条目.

BTW: I am using SQL Server 11 and the table has >>1m entries.

我的查询:

 select
   customer_table.Dt
   ,customer_table_lead.Dt as Dt_next
   ,customer_table.customer_id
   ,customer_table.buy_time
   ,customer_table.money_spent
 from
 (
   select 
     #customer_data.*
     ,dense_rank() over (partition by customer_id order by customer_id asc, Dt asc) as Dt_int
   from #customer_data
 ) as customer_table
 left outer join
 (
   select distinct
     #customer_data.Dt
     ,#customer_data.customer_id
     ,dense_rank() over (partition by customer_id order by customer_id asc, Dt asc)-1 as Dt_int
   from #customer_data
 ) as customer_table_lead
 on
 (
   customer_table.Dt_int=customer_table_lead.Dt_int
   and customer_table.customer_id=customer_table_lead.customer_id
 )

示例数据:

 create table #customer_data (
   Dt date not null,
   customer_id int not null,
   buy_time time(2) not null,
   money_spent float not null
 );

 insert into #customer_data values ('2000-01-04',100,'11:00:00',2);
 insert into #customer_data values ('2000-01-05',100,'16:00:00',1);
 insert into #customer_data values ('2000-01-10',100,'13:00:00',4);
 insert into #customer_data values ('2000-01-10',100,'14:00:00',3);

 insert into #customer_data values ('2000-01-04',200,'09:00:00',10);
 insert into #customer_data values ('2000-01-06',200,'10:00:00',11);
 insert into #customer_data values ('2000-01-06',200,'11:00:00',5);
 insert into #customer_data values ('2000-01-10',200,'08:00:00',20);

推荐答案

试试这个查询:

select cd.Dt
    , t.Dt_next
    , cd.customer_id
    , cd.buy_time
    , cd.money_spent
from (
    select Dt
        , LEAD(Dt) OVER (PARTITION BY customer_id ORDER BY Dt) AS Dt_next
        , customer_id
    from (
        select distinct Dt, customer_id
        from #customer_data
    ) t
) t
inner join #customer_data cd on t.customer_id = cd.customer_id and t.Dt = cd.Dt

为什么字段 money_spent 有浮点型?您可能会遇到计算问题.将其转换为十进制类型.

Why field money_spent has float type? You may have problems with calculations. Convert it to decimal type.

这篇关于SQL Server:跨组(而非组内)的超前/滞后分析功能的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Execute complex raw SQL query in EF6(在EF6中执行复杂的原始SQL查询)
SSIS: Model design issue causing duplications - can two fact tables be connected?(SSIS:模型设计问题导致重复-两个事实表可以连接吗?)
SQL Server Graph Database - shortest path using multiple edge types(SQL Server图形数据库-使用多种边类型的最短路径)
Invalid column name when using EF Core filtered includes(使用EF核心过滤包括时无效的列名)
How should make faster SQL Server filtering procedure with many parameters(如何让多参数的SQL Server过滤程序更快)
How can I generate an entity–relationship (ER) diagram of a database using Microsoft SQL Server Management Studio?(如何使用Microsoft SQL Server Management Studio生成数据库的实体关系(ER)图?)