使用pyodbc“不安全"的Python多处理和数据库访问?

Python multiprocessing and database access with pyodbc quot;is not safequot;?(使用pyodbc“不安全的Python多处理和数据库访问?)
本文介绍了使用pyodbc“不安全"的Python多处理和数据库访问?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

问题:

我收到以下回溯,但不明白它的含义或如何解决它:

I am getting the following traceback and don't understand what it means or how to fix it:

Traceback (most recent call last):
  File "<string>", line 1, in <module>
  File "C:Python26libmultiprocessingforking.py", line 342, in main
    self = load(from_parent)
  File "C:Python26libpickle.py", line 1370, in load
    return Unpickler(file).load()
  File "C:Python26libpickle.py", line 858, in load
    dispatch[key](self)
  File "C:Python26libpickle.py", line 1083, in load_newobj
    obj = cls.__new__(cls, *args)
TypeError: object.__new__(pyodbc.Cursor) is not safe, use pyodbc.Cursor.__new__()

情况:

我有一个充满待处理数据的 SQL Server 数据库.我正在尝试使用多处理模块来并行化工作并利用我计算机上的多个内核.我的一般类结构如下:

I've got a SQL Server database full of data to be processed. I'm trying to use the multiprocessing module to parallelize the work and take advantage of the multiple cores on my computer. My general class structure is as follows:

  • MyManagerClass
    • 这是程序开始的主类.
    • 它创建了两个 multiprocessing.Queue 对象,一个 work_queue 和一个 write_queue
    • 它还会创建并启动其他进程,然后等待它们完成.
    • 注意:这不是 multiprocessing.managers.BaseManager() 的扩展
    • MyManagerClass
      • This is the main class, where the program starts.
      • It creates two multiprocessing.Queue objects, one work_queue and one write_queue
      • It also creates and launches the other processes, then waits for them to finish.
      • NOTE: this is not an extension of multiprocessing.managers.BaseManager()
      • 该类从 SQL Server 数据库中读取数据.
      • 它将项目放入 work_queue.
      • 这是工作处理发生的地方.
      • 它从 work_queue 获取项目并将完成的项目放入 write_queue.
      • This is where the work processing happens.
      • It gets items from the work_queue and puts completed items in the write_queue.
      • 该类负责将处理后的数据写回 SQL Server 数据库.
      • 它从 write_queue 中获取项目.
      • This class is in charge of writing the processed data back to the SQL Server database.
      • It gets items from the write_queue.

      这个想法是,将有一名经理、一名读者、一名作家和许多工人.

      The idea is that there will be one manager, one reader, one writer, and many workers.

      其他详情:

      我在 stderr 中获得了两次回溯,所以我认为它发生在读者和作者一次.我的工作进程创建得很好,但只是坐在那里,直到我发送一个 KeyboardInterrupt,因为它们在 work_queue 中没有任何内容.

      I get the traceback twice in stderr, so I'm thinking that it happens once for the reader and once for the writer. My worker processes get created fine, but just sit there until I send a KeyboardInterrupt because they have nothing in the work_queue.

      读取器和写入器都有自己的数据库连接,在初始化时创建.

      Both the reader and writer have their own connection to the database, created on initialization.

      解决方案:

      感谢 Mark 和 Ferdinand Beyer 提供的答案和问题导致了这个解决方案.他们正确地指出,Cursor 对象不是pickle-able",这是多处理用于在进程之间传递信息的方法.

      Thanks to Mark and Ferdinand Beyer for their answers and questions that led to this solution. They rightfully pointed out that the Cursor object is not "pickle-able", which is the method that multiprocessing uses to pass information between processes.

      我的代码的问题是 MyReaderClass(multiprocessing.Process)MyWriterClass(multiprocessing.Process) 都在它们的 __init__() 中连接到数据库 方法.我在 MyManagerClass 中创建了这两个对象(即调用它们的 init 方法),然后调用 start().

      The issue with my code was that MyReaderClass(multiprocessing.Process) and MyWriterClass(multiprocessing.Process) both connected to the database in their __init__() methods. I created both these objects (i.e. called their init method) in MyManagerClass, then called start().

      所以它会创建连接和游标对象,然后尝试通过pickle将它们发送到子进程.我的解决方案是将连接和游标对象的实例化移动到 run() 方法,直到子进程完全创建后才会调用.

      So it would create the connection and cursor objects, then try to send them to the child process via pickle. My solution was to move the instantiation of the connection and cursor objects to the run() method, which isn't called until the child process is fully created.

      推荐答案

      多处理依赖于酸洗来在进程之间通信对象.pyodbc 连接和游标对象不能被pickle.

      Multiprocessing relies on pickling to communicate objects between processes. The pyodbc connection and cursor objects can not be pickled.

      >>> cPickle.dumps(aCursor)
      Traceback (most recent call last):
        File "<stdin>", line 1, in <module>
        File "/usr/lib64/python2.5/copy_reg.py", line 69, in _reduce_ex
          raise TypeError, "can't pickle %s objects" % base.__name__
      TypeError: can't pickle Cursor objects
      >>> cPickle.dumps(dbHandle)
      Traceback (most recent call last):
        File "<stdin>", line 1, in <module>
        File "/usr/lib64/python2.5/copy_reg.py", line 69, in _reduce_ex
          raise TypeError, "can't pickle %s objects" % base.__name__
      TypeError: can't pickle Connection objects
      

      它将项目放入工作队列",什么项目?光标对象是否也有可能被传递?

      "It puts items in the work_queue", what items? Is it possible the cursor object is getting passed as well?

      这篇关于使用pyodbc“不安全"的Python多处理和数据库访问?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Execute complex raw SQL query in EF6(在EF6中执行复杂的原始SQL查询)
Flask + PyMySQL giving error no attribute #39;settimeout#39;(FlASK+PyMySQL给出错误,没有属性#39;setTimeout#39;)
SSIS: Model design issue causing duplications - can two fact tables be connected?(SSIS:模型设计问题导致重复-两个事实表可以连接吗?)
SQL Server Graph Database - shortest path using multiple edge types(SQL Server图形数据库-使用多种边类型的最短路径)
Invalid column name when using EF Core filtered includes(使用EF核心过滤包括时无效的列名)
How should make faster SQL Server filtering procedure with many parameters(如何让多参数的SQL Server过滤程序更快)