问题描述
我想通过 Elasticsearch 对电子邮件或电话进行模糊匹配.例如:
I want to make fuzzy match for email or telephone by Elasticsearch. For example:
匹配所有以 @gmail.com
或
匹配所有以136
开头的电话.
match all telephone startwith 136
.
我知道我可以使用通配符,
I know I can use wildcard,
{
"query": {
"wildcard" : {
"email": "*gmail.com"
}
}
}
但是性能很差.我尝试使用正则表达式:
but the performance is very poor. I tried to use regexp:
{"query": {"regexp": {"email": {"value": "*163\.com*"} } } }
但不起作用.
有没有更好的方法来制作它?
Is there better way to make it?
curl -XGET 本地主机:9200/user_data
curl -XGET localhost:9200/user_data
{
"user_data": {
"aliases": {},
"mappings": {
"user_data": {
"properties": {
"address": {
"type": "string"
},
"age": {
"type": "long"
},
"comment": {
"type": "string"
},
"created_on": {
"type": "date",
"format": "dateOptionalTime"
},
"custom": {
"properties": {
"key": {
"type": "string"
},
"value": {
"type": "string"
}
}
},
"gender": {
"type": "string"
},
"name": {
"type": "string"
},
"qq": {
"type": "string"
},
"tel": {
"type": "string"
},
"updated_on": {
"type": "date",
"format": "dateOptionalTime"
},
}
}
},
"settings": {
"index": {
"creation_date": "1458832279465",
"uuid": "Fbmthc3lR0ya51zCnWidYg",
"number_of_replicas": "1",
"number_of_shards": "5",
"version": {
"created": "1070299"
}
}
},
"warmers": {}
}
}
映射:
{
"settings": {
"analysis": {
"analyzer": {
"index_phone_analyzer": {
"type": "custom",
"char_filter": [ "digit_only" ],
"tokenizer": "digit_edge_ngram_tokenizer",
"filter": [ "trim" ]
},
"search_phone_analyzer": {
"type": "custom",
"char_filter": [ "digit_only" ],
"tokenizer": "keyword",
"filter": [ "trim" ]
},
"index_email_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": [ "lowercase", "name_ngram_filter", "trim" ]
},
"search_email_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": [ "lowercase", "trim" ]
}
},
"char_filter": {
"digit_only": {
"type": "pattern_replace",
"pattern": "\\D+",
"replacement": ""
}
},
"tokenizer": {
"digit_edge_ngram_tokenizer": {
"type": "edgeNGram",
"min_gram": "3",
"max_gram": "15",
"token_chars": [ "digit" ]
}
},
"filter": {
"name_ngram_filter": {
"type": "ngram",
"min_gram": "3",
"max_gram": "20"
}
}
}
},
"mappings" : {
"user_data" : {
"properties" : {
"name" : {
"type" : "string",
"analyzer" : "ik"
},
"age" : {
"type" : "integer"
},
"gender": {
"type" : "string"
},
"qq" : {
"type" : "string"
},
"email" : {
"type" : "string",
"analyzer": "index_email_analyzer",
"search_analyzer": "search_email_analyzer"
},
"tel" : {
"type" : "string",
"analyzer": "index_phone_analyzer",
"search_analyzer": "search_phone_analyzer"
},
"address" : {
"type": "string",
"analyzer" : "ik"
},
"comment" : {
"type" : "string",
"analyzer" : "ik"
},
"created_on" : {
"type" : "date",
"format" : "dateOptionalTime"
},
"updated_on" : {
"type" : "date",
"format" : "dateOptionalTime"
},
"custom": {
"type" : "nested",
"properties" : {
"key" : {
"type" : "string"
},
"value" : {
"type" : "string"
}
}
}
}
}
}
}
推荐答案
一个简单的方法是创建一个使用 n-gram 令牌过滤器 用于电子邮件(=> 见下文 index_email_analyzer
和 search_email_analyzer
+ email_url_analyzer
用于精确的电子邮件匹配)和 edge-ngram 标记过滤器 用于手机(=> 见下文 index_phone_analyzer
和 search_phone_analyzer
).
An easy way to do this is to create a custom analyzer which makes use of the n-gram token filter for emails (=> see below index_email_analyzer
and search_email_analyzer
+ email_url_analyzer
for exact email matching) and edge-ngram token filter for phones (=> see below index_phone_analyzer
and search_phone_analyzer
).
完整的索引定义如下.
PUT myindex
{
"settings": {
"analysis": {
"analyzer": {
"email_url_analyzer": {
"type": "custom",
"tokenizer": "uax_url_email",
"filter": [ "trim" ]
},
"index_phone_analyzer": {
"type": "custom",
"char_filter": [ "digit_only" ],
"tokenizer": "digit_edge_ngram_tokenizer",
"filter": [ "trim" ]
},
"search_phone_analyzer": {
"type": "custom",
"char_filter": [ "digit_only" ],
"tokenizer": "keyword",
"filter": [ "trim" ]
},
"index_email_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": [ "lowercase", "name_ngram_filter", "trim" ]
},
"search_email_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": [ "lowercase", "trim" ]
}
},
"char_filter": {
"digit_only": {
"type": "pattern_replace",
"pattern": "\\D+",
"replacement": ""
}
},
"tokenizer": {
"digit_edge_ngram_tokenizer": {
"type": "edgeNGram",
"min_gram": "1",
"max_gram": "15",
"token_chars": [ "digit" ]
}
},
"filter": {
"name_ngram_filter": {
"type": "ngram",
"min_gram": "1",
"max_gram": "20"
}
}
}
},
"mappings": {
"your_type": {
"properties": {
"email": {
"type": "string",
"analyzer": "index_email_analyzer",
"search_analyzer": "search_email_analyzer"
},
"phone": {
"type": "string",
"analyzer": "index_phone_analyzer",
"search_analyzer": "search_phone_analyzer"
}
}
}
}
}
现在,让我们一点一点地剖析它.
Now, let's dissect it one bit after another.
对于 phone
字段,其想法是使用 index_phone_analyzer
索引电话值,它使用边缘 ngram 标记器来索引电话号码的所有前缀.因此,如果您的电话号码是 1362435647
,则会生成以下令牌:1
、13
、136
、<代码>1362、13624
、136243
、1362435
、13624356
、13624356
代码>、<代码>136243564代码>、<代码>1362435647代码>.
For the phone
field, the idea is to index phone values with index_phone_analyzer
, which uses an edge-ngram tokenizer in order to index all prefixes of the phone number. So if your phone number is 1362435647
, the following tokens will be produced: 1
, 13
, 136
, 1362
, 13624
, 136243
, 1362435
, 13624356
, 13624356
, 136243564
, 1362435647
.
然后在搜索时我们使用另一个分析器 search_phone_analyzer
它将简单地获取输入号码(例如 136
)并将其与 phone
字段匹配使用简单的 match
或 term
查询:
Then when searching we use another analyzer search_phone_analyzer
which will simply take the input number (e.g. 136
) and match it against the phone
field using a simple match
or term
query:
POST myindex
{
"query": {
"term":
{ "phone": "136" }
}
}
对于 email
字段,我们以类似的方式进行,因为我们使用 index_email_analyzer
索引电子邮件值,它使用 ngram 令牌过滤器,这将产生可以从电子邮件值中获取的所有可能的不同长度(1 到 20 个字符之间)的标记.例如:john@gmail.com
将被标记为 j
, jo
, joh
, ...,gmail.com
, ..., john@gmail.com
.
For the email
field, we proceed in a similar way, in that we index the email values with the index_email_analyzer
, which uses an ngram token filter, which will produce all possible tokens of varying length (between 1 and 20 chars) that can be taken from the email value. For instance: john@gmail.com
will be tokenized to j
, jo
, joh
, ..., gmail.com
, ..., john@gmail.com
.
然后在搜索时,我们将使用另一个名为 search_email_analyzer
的分析器,它将获取输入并尝试将其与索引标记进行匹配.
Then when searching, we'll use another analyzer called search_email_analyzer
which will take the input and try to match it against the indexed tokens.
POST myindex
{
"query": {
"term":
{ "email": "@gmail.com" }
}
}
email_url_analyzer
分析器未在此示例中使用,但我已将其包含在内,以防您需要匹配确切的电子邮件值.
The email_url_analyzer
analyzer is not used in this example but I've included it just in case you need to match on the exact email value.
这篇关于如何通过 Elasticsearch 模糊匹配电子邮件或电话?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!