在sql server中高效地将行转换为列

Efficiently convert rows to columns in sql server(在sql server中高效地将行转换为列)
本文介绍了在sql server中高效地将行转换为列的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在寻找一种有效的方法在SQL Server中将行转换为列,听说PIVOT不是很快,我需要处理大量记录.

I'm looking for an efficient way to convert rows to columns in SQL server, I heard that PIVOT is not very fast, and I need to deal with lot of records.

这是我的例子:

   -------------------------------
   | Id | Value  | ColumnName    |
   -------------------------------
   | 1  | John   | FirstName     |
   | 2  | 2.4    | Amount        |
   | 3  | ZH1E4A | PostalCode    |
   | 4  | Fork   | LastName      |
   | 5  | 857685 | AccountNumber |
   -------------------------------

这是我的结果:

---------------------------------------------------------------------
| FirstName  |Amount|   PostalCode   |   LastName  |  AccountNumber |
---------------------------------------------------------------------
| John       | 2.4  |   ZH1E4A       |   Fork      |  857685        |
---------------------------------------------------------------------

如何构建结果?

推荐答案

有多种方法可以将数据从多行转换为列.

There are several ways that you can transform data from multiple rows into columns.

在 SQL Server 中,您可以使用 PIVOT 函数将数据从行转换为列:

In SQL Server you can use the PIVOT function to transform the data from rows to columns:

select Firstname, Amount, PostalCode, LastName, AccountNumber
from
(
  select value, columnname
  from yourtable
) d
pivot
(
  max(value)
  for columnname in (Firstname, Amount, PostalCode, LastName, AccountNumber)
) piv;

参见演示.

如果您想转置未知数量的columnnames,那么您可以使用动态SQL:

If you have an unknown number of columnnames that you want to transpose, then you can use dynamic SQL:

DECLARE @cols AS NVARCHAR(MAX),
    @query  AS NVARCHAR(MAX)

select @cols = STUFF((SELECT ',' + QUOTENAME(ColumnName) 
                    from yourtable
                    group by ColumnName, id
                    order by id
            FOR XML PATH(''), TYPE
            ).value('.', 'NVARCHAR(MAX)') 
        ,1,1,'')

set @query = N'SELECT ' + @cols + N' from 
             (
                select value, ColumnName
                from yourtable
            ) x
            pivot 
            (
                max(value)
                for ColumnName in (' + @cols + N')
            ) p '

exec sp_executesql @query;

参见演示.

如果不想使用PIVOT函数,那么可以使用带有CASE表达式的聚合函数:

If you do not want to use the PIVOT function, then you can use an aggregate function with a CASE expression:

select
  max(case when columnname = 'FirstName' then value end) Firstname,
  max(case when columnname = 'Amount' then value end) Amount,
  max(case when columnname = 'PostalCode' then value end) PostalCode,
  max(case when columnname = 'LastName' then value end) LastName,
  max(case when columnname = 'AccountNumber' then value end) AccountNumber
from yourtable

参见演示.

这也可以使用多个连接来完成,但您需要一些列来关联示例数据中没有的每一行.但基本语法是:

This could also be completed using multiple joins, but you will need some column to associate each of the rows which you do not have in your sample data. But the basic syntax would be:

select fn.value as FirstName,
  a.value as Amount,
  pc.value as PostalCode,
  ln.value as LastName,
  an.value as AccountNumber
from yourtable fn
left join yourtable a
  on fn.somecol = a.somecol
  and a.columnname = 'Amount'
left join yourtable pc
  on fn.somecol = pc.somecol
  and pc.columnname = 'PostalCode'
left join yourtable ln
  on fn.somecol = ln.somecol
  and ln.columnname = 'LastName'
left join yourtable an
  on fn.somecol = an.somecol
  and an.columnname = 'AccountNumber'
where fn.columnname = 'Firstname'

这篇关于在sql server中高效地将行转换为列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Execute complex raw SQL query in EF6(在EF6中执行复杂的原始SQL查询)
Hibernate reactive No Vert.x context active in aws rds(AWS RDS中的休眠反应性非Vert.x上下文处于活动状态)
Bulk insert with mysql2 and NodeJs throws 500(使用mysql2和NodeJS的大容量插入抛出500)
Flask + PyMySQL giving error no attribute #39;settimeout#39;(FlASK+PyMySQL给出错误,没有属性#39;setTimeout#39;)
auto_increment column for a group of rows?(一组行的AUTO_INCREMENT列?)
Sort by ID DESC(按ID代码排序)