如何恢复损坏的 SQLite3 数据库?

How to recover a corrupt SQLite3 database?(如何恢复损坏的 SQLite3 数据库?)
本文介绍了如何恢复损坏的 SQLite3 数据库?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

这是之前回答的帖子的后续问题:是否有用于在 Linux 中验证 SQLite 数据库的命令行实用程序?

This is a follow up question to a previously answered post: Is there a command line utility for validating SQLite databases in Linux?

如果数据库产生以下错误:

If a database is producing the following error:

$ sqlite3 mydata.db "PRAGMA integrity_check"
Error: database disk image is malformed

是否有任何清理处理可以将数据库恢复到可用状态?即使可能会丢失一些损坏的记录?

Is there any cleanup processing that can be done to recover the database to a usable state? Even at the potential loss of some corrupt records?

谢谢

推荐答案

UPDATE:现在有一个自动方法内置于 SQLite:.recover

UPDATE: There is now an automatic method that is built into SQLite: .recover

有时,损坏仅或大部分出现在索引中,在这种情况下,通过尝试使用 .dump 转储整个数据库,可以获取部分或大部分记录,并使用这些命令来创建一个新的数据库:

Sometimes, the corruption is only or mostly in indexes, in which case it would be possible to get some or most records by trying to dump the entire database with .dump, and use those commands to create a new database:

$ sqlite3 mydata.db ".dump" | sqlite3 new.db

然而,这并不总是可行的.

However, this is not always possible.

最简单、最可靠的方法是从备份中恢复数据库文件.

The easiest and most reliable way is to restore the database file from the backup.

这篇关于如何恢复损坏的 SQLite3 数据库?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

SQL/MySQL: split a quantity value into multiple rows by date(SQL/MySQL:按日期将数量值拆分为多行)
SQL Server Graph Database - shortest path using multiple edge types(SQL Server图形数据库-使用多种边类型的最短路径)
How should make faster SQL Server filtering procedure with many parameters(如何让多参数的SQL Server过滤程序更快)
FastAPI + Tortoise ORM + FastAPI Users (Python) - Relationship - Many To Many(FastAPI+Tortoise ORM+FastAPI用户(Python)-关系-多对多)
How can I generate an entity–relationship (ER) diagram of a database using Microsoft SQL Server Management Studio?(如何使用Microsoft SQL Server Management Studio生成数据库的实体关系(ER)图?)
Inserting NaN value into MySQL Database(将NaN值插入MySQL数据库)