问题描述
我的情况:
- 该查询搜索了大约 90,000 辆汽车
- 每次查询都需要很长时间
- 我已经在所有被 JOIN 的字段上建立了索引.
我该如何优化它?
这是查询:
SELECT vehicles.make_id,
vehicles.fuel_id,
vehicles.body_id,
vehicles.transmission_id,
vehicles.colour_id,
vehicles.mileage,
vehicles.vehicle_year,
vehicles.engine_size,
vehicles.trade_or_private,
vehicles.doors,
vehicles.model_id,
Round(3959 * Acos(Cos(Radians(51.465436)) *
Cos(Radians(vehicles.gps_lat)) *
Cos(
Radians(vehicles.gps_lon) - Radians(
-0.296482)) +
Sin(
Radians(51.465436)) * Sin(
Radians(vehicles.gps_lat)))) AS distance
FROM vehicles
INNER JOIN vehicles_makes
ON vehicles.make_id = vehicles_makes.id
LEFT JOIN vehicles_models
ON vehicles.model_id = vehicles_models.id
LEFT JOIN vehicles_fuel
ON vehicles.fuel_id = vehicles_fuel.id
LEFT JOIN vehicles_transmissions
ON vehicles.transmission_id = vehicles_transmissions.id
LEFT JOIN vehicles_axles
ON vehicles.axle_id = vehicles_axles.id
LEFT JOIN vehicles_sub_years
ON vehicles.sub_year_id = vehicles_sub_years.id
INNER JOIN members
ON vehicles.member_id = members.id
LEFT JOIN vehicles_categories
ON vehicles.category_id = vehicles_categories.id
WHERE vehicles.status = 1
AND vehicles.date_from < 1330349235
AND vehicles.date_to > 1330349235
AND vehicles.type_id = 1
AND ( vehicles.price >= 0
AND vehicles.price <= 1000000 )
这是车辆表架构:
CREATE TABLE IF NOT EXISTS `vehicles` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`number_plate` varchar(100) NOT NULL,
`type_id` int(11) NOT NULL,
`make_id` int(11) NOT NULL,
`model_id` int(11) NOT NULL,
`model_sub_type` varchar(250) NOT NULL,
`engine_size` decimal(12,1) NOT NULL,
`vehicle_year` int(11) NOT NULL,
`sub_year_id` int(11) NOT NULL,
`mileage` int(11) NOT NULL,
`fuel_id` int(11) NOT NULL,
`transmission_id` int(11) NOT NULL,
`price` decimal(12,2) NOT NULL,
`trade_or_private` tinyint(4) NOT NULL,
`postcode` varchar(25) NOT NULL,
`gps_lat` varchar(50) NOT NULL,
`gps_lon` varchar(50) NOT NULL,
`img1` varchar(100) NOT NULL,
`img2` varchar(100) NOT NULL,
`img3` varchar(100) NOT NULL,
`img4` varchar(100) NOT NULL,
`img5` varchar(100) NOT NULL,
`img6` varchar(100) NOT NULL,
`img7` varchar(100) NOT NULL,
`img8` varchar(100) NOT NULL,
`img9` varchar(100) NOT NULL,
`img10` varchar(100) NOT NULL,
`is_featured` tinyint(4) NOT NULL,
`body_id` int(11) NOT NULL,
`colour_id` int(11) NOT NULL,
`doors` tinyint(4) NOT NULL,
`axle_id` int(11) NOT NULL,
`category_id` int(11) NOT NULL,
`contents` text NOT NULL,
`date_created` int(11) NOT NULL,
`date_edited` int(11) NOT NULL,
`date_from` int(11) NOT NULL,
`date_to` int(11) NOT NULL,
`member_id` int(11) NOT NULL,
`inactive_id` int(11) NOT NULL,
`status` tinyint(4) NOT NULL,
PRIMARY KEY (`id`),
KEY `type_id` (`type_id`),
KEY `make_id` (`make_id`),
KEY `model_id` (`model_id`),
KEY `fuel_id` (`fuel_id`),
KEY `transmission_id` (`transmission_id`),
KEY `body_id` (`body_id`),
KEY `colour_id` (`colour_id`),
KEY `axle_id` (`axle_id`),
KEY `category_id` (`category_id`),
KEY `vehicle_year` (`vehicle_year`),
KEY `mileage` (`mileage`),
KEY `status` (`status`),
KEY `date_from` (`date_from`),
KEY `date_to` (`date_to`),
KEY `trade_or_private` (`trade_or_private`),
KEY `doors` (`doors`),
KEY `price` (`price`),
KEY `engine_size` (`engine_size`),
KEY `sub_year_id` (`sub_year_id`),
KEY `member_id` (`member_id`),
KEY `date_created` (`date_created`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8 AUTO_INCREMENT=136237 ;
解释:
1 SIMPLE vehicles ref type_id,make_id,status,date_from,date_to,price,mem... type_id 4 const 85695 Using where
1 SIMPLE members index PRIMARY PRIMARY 4 NULL 3 Using where; Using index; Using join buffer
1 SIMPLE vehicles_makes eq_ref PRIMARY PRIMARY 4 tvs.vehicles.make_id 1 Using index
1 SIMPLE vehicles_models eq_ref PRIMARY PRIMARY 4 tvs.vehicles.model_id 1 Using index
1 SIMPLE vehicles_fuel eq_ref PRIMARY PRIMARY 4 tvs.vehicles.fuel_id 1 Using index
1 SIMPLE vehicles_transmissions eq_ref PRIMARY PRIMARY 4 tvs.vehicles.transmission_id 1 Using index
1 SIMPLE vehicles_axles eq_ref PRIMARY PRIMARY 4 tvs.vehicles.axle_id 1 Using index
1 SIMPLE vehicles_sub_years eq_ref PRIMARY PRIMARY 4 tvs.vehicles.sub_year_id 1 Using index
1 SIMPLE vehicles_categories eq_ref PRIMARY PRIMARY 4 tvs.vehicles.category_id 1 Using index
推荐答案
改进 WHERE 子句
您的 EXPLAIN 显示 MySQL 仅使用一个索引 (type_id
) 来选择与 WHERE
子句匹配的行,即使您在该子句中有多个条件.
Your EXPLAIN shows that MySQL is only utilizing one index (type_id
) for selecting the rows that match the WHERE
clause, even though you have multiple criteria in the clause.
为了能够对 WHERE 子句中的所有条件使用索引,并尽快减小结果集的大小,请在车辆表的以下列添加多列索引:
To be able to utilize an index for all of the criteria in the WHERE clause, and to reduce the size of the result set as quickly as possible, add a multi-column index on the following columns on the vehicles table:
(status, date_from, date_to, type_id, price)
列应按基数从高到低的顺序排列.
The columns should be in order of highest cardinality to least.
例如,vehicles.date_from
可能比 status
具有更多不同的值,因此将 date_from
列放在 status 之前
,像这样:
For example, vehicles.date_from
is likely to have more distinct values than status
, so put the date_from
column before status
, like this:
(date_from, date_to, price, type_id, status)
这应该会减少在查询执行的第一部分中返回的行数,并且应该在 EXPLAIN 结果的第一行用较低的行数来证明.
This should reduce the rows returned in the first part of the query execution, and should be demonstrated with a lower row count on the first line of the EXPLAIN result.
您还会注意到 MySQL 将对 EXPLAIN 结果中的 WHERE 使用多列索引.如果碰巧没有,您应该提示或强制使用多列索引.
You will also notice that MySQL will use the multi-column index for the WHERE in the EXPLAIN result. If, by chance, it doesn't, you should hint or force the multi-column index.
删除不必要的 JOIN
您似乎没有使用任何连接表中的任何字段,因此请删除连接.这将删除查询的所有额外工作,并使您得到一个简单的执行计划(EXPLAIN 结果中的一行).
It doesn't appear that you are using any fields in any of the joined tables, so remove the joins. This will remove all of the additional work of the query, and get you down to one, simple execution plan (one line in the EXPLAIN result).
每个 JOINed 表都会导致对结果集的每一行进行额外的查找.因此,如果 WHERE 子句从车辆中选择 5,000 行,因为您有 8 个连接到车辆,您将有 5,000 * 8 = 40,000 次查找.您的数据库服务器有很多要求.
Each JOINed table causes an additional lookup per row of the result set. So, if the WHERE clause selects 5,000 rows from vehicles, since you have 8 joins to vehicles, you will have 5,000 * 8 = 40,000 lookups. That's a lot to ask from your database server.
这篇关于如何使用许多连接优化慢查询的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!