是否可以跨表索引?

Is cross-table indexing possible?(是否可以跨表索引?)
本文介绍了是否可以跨表索引?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

考虑这样一种结构,其中您与两个表上的条件(where、order by 等)都存在多对一(或一对多)关系.例如:

Consider a structure where you have a many-to-one (or one-to-many) relationship with a condition (where, order by, etc.) on both tables. For example:

CREATE TABLE tableTwo (
    id INT UNSIGNED PRIMARY KEY AUTO_INCREMENT,
    eventTime DATETIME NOT NULL,
    INDEX (eventTime)
) ENGINE=InnoDB;

CREATE TABLE tableOne (
    id INT UNSIGNED PRIMARY KEY AUTO_INCREMENT,
    tableTwoId INT UNSIGNED NOT NULL,
    objectId INT UNSIGNED NOT NULL,
    INDEX (objectID),
    FOREIGN KEY (tableTwoId) REFERENCES tableTwo (id)
) ENGINE=InnoDB;

例如查询:

select * from tableOne t1 
  inner join tableTwo t2 on t1.tableTwoId = t2.id
  where objectId = '..'
  order by eventTime;

假设您索引 tableOne.objectIdtableTwo.eventTime.如果您随后解释上述查询,它将显示使用文件排序".本质上,它首先应用 tableOne.objectId 索引,但它不能应用 tableTwo.eventTime 索引,因为该索引是针对整个 tableTwo(不是有限结果)设置),因此它必须进行手动排序.

Let's say you index tableOne.objectId and tableTwo.eventTime. If you then explain on the above query, it will show "Using filesort". Essentially, it first applies the tableOne.objectId index, but it can't apply the tableTwo.eventTime index because that index is for the entirety of tableTwo (not the limited result set), and thus it must do a manual sort.

因此,有没有一种方法可以进行跨表索引,这样每次检索结果时就不必进行文件排序?类似于:

create index ind_t1oi_t2et on tableOne t1 
  inner join tableTwo t2 on t1.tableTwoId = t2.id 
  (t1.objectId, t2.eventTime);

另外,我已经研究过创建一个视图并为其建立索引,但视图不支持索引.

Also, I've looked into creating a view and indexing that, but indexing is not supported for views.

如果无法进行跨表索引,我一直倾向于的解决方案是在一个表中复制条件数据.在这种情况下,这意味着 eventTime 将在 tableOne 中复制,并且将在 tableOne.objectId 上设置多列索引tableOne.eventTime(本质上是手动创建索引).但是,我想我会先寻找其他人的经验,看看这是否是最好的方法.

The solution I've been leaning towards if cross-table indexing isn't possible is replicating the conditional data in one table. In this case that means eventTime would be replicated in tableOne and a multi-column index would be set up on tableOne.objectId and tableOne.eventTime (essentially manually creating the index). However, I thought I'd seek out other people's experience first to see if that was the best way.

非常感谢!

更新:

以下是加载测试数据和比较结果的一些过程:

Here are some procedures for loading test data and comparing results:

drop procedure if exists populate_table_two;
delimiter #
create procedure populate_table_two(IN numRows int)
begin
declare v_counter int unsigned default 0;
  while v_counter < numRows do
    insert into tableTwo (eventTime) 
    values (CURRENT_TIMESTAMP - interval 0 + floor(0 + rand()*1000) minute);
    set v_counter=v_counter+1;
  end while;
end #
delimiter ;

drop procedure if exists populate_table_one;
delimiter #
create procedure populate_table_one
   (IN numRows int, IN maxTableTwoId int, IN maxObjectId int)
begin
declare v_counter int unsigned default 0;
  while v_counter < numRows do
    insert into tableOne (tableTwoId, objectId) 
      values (floor(1 +(rand() * maxTableTwoId)), 
              floor(1 +(rand() * maxObjectId)));
    set v_counter=v_counter+1;
  end while;
end #
delimiter ;

您可以使用这些来填充 tableTwo 中的 10,000 行和 tableOne 中的 20,000 行(随机引用 tableOne 和随机 objectIds 介于 1 和 5 之间),分别为我运行了 26.2 和 70.77 秒:

You can use these as follows to populate 10,000 rows in tableTwo and 20,000 rows in tableOne (with random references to tableOne and random objectIds between 1 and 5), which took 26.2 and 70.77 seconds respectively to run for me:

call populate_table_two(10000);
call populate_table_one(20000, 10000, 5);

更新 2(经过测试的触发 SQL):

以下是基于 daniHp 的触发方法的久经考验的 SQL.当添加 tableOne 或更新 tableTwo 时,这会使 dateTimetableOne 上保持同步.此外,如果条件列被复制到连接表,此方法也应该适用于多对多关系.在我对 tableOne 中的 300,000 行和 tableTwo 中的 200,000 行的测试中,具有类似限制的旧查询的速度为 0.12 秒,而新查询的速度仍然显示为0.00 秒.因此,有一个明显的改进,这种方法应该在数百万行甚至更远的地方表现良好.

Below is the tried and tested SQL based on daniHp's triggering method. This keeps the dateTime in sync on tableOne when tableOne is added or tableTwo is updated. Also, this method should also work for many-to-many relationships if the condition columns are copied to the joining table. In my testing of 300,000 rows in tableOne and 200,000 rows in tableTwo, the speed of the old query with similar limits was 0.12 sec and the speed of the new query still shows as 0.00 seconds. Thus, there is a clear improvement, and this method should perform well into the millions of rows and farther.

alter table tableOne add column tableTwo_eventTime datetime;

create index ind_t1_oid_t2et on tableOne (objectId, tableTwo_eventTime);

drop TRIGGER if exists t1_copy_t2_eventTime;
delimiter #
CREATE TRIGGER t1_copy_t2_eventTime
   BEFORE INSERT ON tableOne
for each row
begin
  set NEW.tableTwo_eventTime = (select eventTime 
       from tableTwo t2
       where t2.id = NEW.tableTwoId);
end #
delimiter ;

drop TRIGGER if exists upd_t1_copy_t2_eventTime;
delimiter #
CREATE TRIGGER upd_t1_copy_t2_eventTime
   BEFORE UPDATE ON tableTwo
for each row
begin
  update tableOne 
    set tableTwo_eventTime = NEW.eventTime 
    where tableTwoId = NEW.id;
end #
delimiter ;

以及更新的查询:

select * from tableOne t1 
  inner join tableTwo t2 on t1.tableTwoId = t2.id
  where t1.objectId = 1
  order by t1.tableTwo_eventTime desc limit 0,10;

推荐答案

如您所知,SQLServer 通过 索引视图:

As you know, SQLServer achieves this with indexed views:

索引视图提供了无法实现的额外性能优势使用标准索引实现.索引视图可以增加查询表现在以下方面:

indexed views provide additional performance benefits that cannot be achieved using standard indexes. Indexed views can increase query performance in the following ways:

聚合可以预先计算并存储在索引中以最小化查询执行期间的昂贵计算.

Aggregations can be precomputed and stored in the index to minimize expensive computations during query execution.

可以预先连接表格并存储结果数据集.

Tables can be prejoined and the resulting data set stored.

可以存储连接或聚合的组合.

Combinations of joins or aggregations can be stored.

在 SQLServer 中,要利用此技术,您必须查询视图而不是表.这意味着您应该了解视图和索引.

In SQLServer, to take advantage of this technique, you must query over the view and not over the tables. That means that you should know about the view and indexes.

MySQL 没有索引视图,但您可以使用表 + 触发器 + 索引来模拟行为.

MySQL does not have indexed views, but you can simulate the behavior with table + triggers + indexes.

您必须创建一个索引表,而不是创建一个视图,一个使数据表保持最新的触发器,然后您必须查询新表而不是规范化表.

Instead of creating a view, you must create an indexed table, a trigger to keep the data table up to date, and then you must query your new table instead of your normalized tables.

您必须评估写操作的开销是否抵消了读操作的改进.

You must evaluate if the overhead of write operations offsets the improvement in read operations.

请注意,并非总是需要创建新表.例如,在 1:N 关系(主从)触发器中,您可以将字段的副本从主"表保留到详细"表中.在你的情况下:

Note that it is not always necessary to create a new table. For example, in a 1:N relationship (master-detail) trigger, you can keep a copy of a field from the 'master' table into the 'detail' table. In your case:

CREATE TABLE tableOne (
    id INT UNSIGNED PRIMARY KEY AUTO_INCREMENT,
    tableTwoId INT UNSIGNED NOT NULL,
    objectId INT UNSIGNED NOT NULL,
    desnormalized_eventTime DATETIME NOT NULL,
    INDEX (objectID),
    FOREIGN KEY (tableTwoId) REFERENCES tableTwo (id)
) ENGINE=InnoDB;

CREATE TRIGGER tableOne_desnormalized_eventTime
   BEFORE INSERT ON tableOne
for each row
begin
  DECLARE eventTime DATETIME;
  SET eventTime = 
      (select eventTime 
       from tableOne
       where tableOne.id = NEW.tableTwoId);
  NEW.desnormalized_eventTime = eventTime;
end;

请注意,这是一个插入前触发器.

Notice that this is a before insert trigger.

现在,查询改写如下:

select * from tableOne t1 
  inner join tableTwo t2 on t1.tableTwoId = t2.id
  where t1.objectId = '..'
  order by t1.desnormalized_eventTime;

免责声明:未经测试.

这篇关于是否可以跨表索引?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Hibernate reactive No Vert.x context active in aws rds(AWS RDS中的休眠反应性非Vert.x上下文处于活动状态)
Bulk insert with mysql2 and NodeJs throws 500(使用mysql2和NodeJS的大容量插入抛出500)
Flask + PyMySQL giving error no attribute #39;settimeout#39;(FlASK+PyMySQL给出错误,没有属性#39;setTimeout#39;)
auto_increment column for a group of rows?(一组行的AUTO_INCREMENT列?)
Sort by ID DESC(按ID代码排序)
SQL/MySQL: split a quantity value into multiple rows by date(SQL/MySQL:按日期将数量值拆分为多行)