如何使用Python从原始图像中删除所有检测到的线条?

How to remove all the detected lines from the original image using Python?(如何使用Python从原始图像中删除所有检测到的线条?)
本文介绍了如何使用Python从原始图像中删除所有检测到的线条?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试删除图像中存在的所有行。 我能够检测到线条,但当我试图删除线条时,我仍然在最终图像中得到几条小线条。我已经使用cv2.getStructuringElement获得了水平线和垂直线。在某些情况下,最终图像完全失真,我无法前进

图片来自Google

    res = verticle_lines_img + horizontal_lines_img 
    res = cv2.bitwise_not(res)
    fin=cv2.bitwise_or(img_bin, res,mask =cv2.bitwise_not(res))
    fin= cv2.bitwise_not(fin)
    exp =255-res
    final = cv2.bitwise_and(exp,img_bin)
    final = cv2.bitwise_not(final)
    exp = ~exp
    finalised = cv2.bitwise_and(img_bin,final)
    finalised = cv2.bitwise_not(finalised)

请帮帮我!谢谢

推荐答案

以下是一种方法

  • 将图像转换为灰度
  • 获取二值图像的大津阈值
  • 删除水平线
  • 删除垂直线

转换为灰度后,我们使用Otsu的阈值来获得二值图像

image = cv2.imread('1.jpg')
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]

从这里我们构造了一个特殊的水平核来检测水平线。一旦检测到行,我们就填入行以有效地删除行

# Remove horizontal
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (10,1))
detected_lines = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, horizontal_kernel, iterations=2)
cnts = cv2.findContours(detected_lines, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
    cv2.drawContours(image, [c], -1, (255,255,255), 2)

类似地,为了删除竖线,我们构造了一个特殊的垂直内核

# Remove vertical
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,10))
detected_lines = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, vertical_kernel, iterations=2)
cnts = cv2.findContours(detected_lines, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
    cv2.drawContours(image, [c], -1, (255,255,255), 2)

以下是检测到的绿色行

结果

您可以通过调整内核大小来微调结果。例如,将(10,1)更改为(15,1)将加强线条检测,而将其降低为(5,1)将放松检测

完整代码

import cv2

image = cv2.imread('1.jpg')
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]

# Remove horizontal
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (10,1))
detected_lines = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, horizontal_kernel, iterations=2)
cnts = cv2.findContours(detected_lines, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
    cv2.drawContours(image, [c], -1, (255,255,255), 2)

# Remove vertical
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,10))
detected_lines = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, vertical_kernel, iterations=2)
cnts = cv2.findContours(detected_lines, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
    cv2.drawContours(image, [c], -1, (255,255,255), 2)

cv2.imshow('thresh', thresh)
cv2.imshow('image', image)
cv2.waitKey()

这篇关于如何使用Python从原始图像中删除所有检测到的线条?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Leetcode 234: Palindrome LinkedList(Leetcode 234:回文链接列表)
How do I read an Excel file directly from Dropbox#39;s API using pandas.read_excel()?(如何使用PANDAS.READ_EXCEL()直接从Dropbox的API读取Excel文件?)
subprocess.Popen tries to write to nonexistent pipe(子进程。打开尝试写入不存在的管道)
I want to realize Popen-code from Windows to Linux:(我想实现从Windows到Linux的POpen-code:)
Reading stdout from a subprocess in real time(实时读取子进程中的标准输出)
How to call type safely on a random file in Python?(如何在Python中安全地调用随机文件上的类型?)